BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14623114)

  • 1. Inhibition of caffeine biosynthesis in tea (Camellia sinensis) and coffee (Coffea arabica) plants by ribavirin.
    Keya CA; Crozier A; Ashihara H
    FEBS Lett; 2003 Nov; 554(3):473-7. PubMed ID: 14623114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separate de Novo and Salvage Purine Pools Are Involved in the Biosynthesis of Theobromine but Not Caffeine in Leaves of Coffea arabica L.
    Nazario GM; Lovatt CJ
    Plant Physiol; 1993 Dec; 103(4):1203-1210. PubMed ID: 12232013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis and catabolism of caffeine in low-caffeine-containing species of Coffea.
    Ashihara H; Crozier A
    J Agric Food Chem; 1999 Aug; 47(8):3425-31. PubMed ID: 10552667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering.
    Ashihara H; Sano H; Crozier A
    Phytochemistry; 2008 Feb; 69(4):841-56. PubMed ID: 18068204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low caffeine content in novel grafted tea with Camellia sinensis as scions and Camellia oleifera as stocks.
    Deng WW; Li M; Gu CC; Li DX; Ma LL; Jin Y; Wan XC
    Nat Prod Commun; 2015 May; 10(5):789-92. PubMed ID: 26058159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine synthase and related methyltransferases in plants.
    Misako K; Kouichi M
    Front Biosci; 2004 May; 9():1833-42. PubMed ID: 14977590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caffeine biosynthesis and adenine metabolism in transgenic Coffea canephora plants with reduced expression of N-methyltransferase genes.
    Ashihara H; Zheng XQ; Katahira R; Morimoto M; Ogita S; Sano H
    Phytochemistry; 2006 May; 67(9):882-6. PubMed ID: 16624354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and biosynthesis of caffeine in plants.
    Ashihara H; Suzuki T
    Front Biosci; 2004 May; 9():1864-76. PubMed ID: 14977593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production.
    Jin L; Bhuiya MW; Li M; Liu X; Han J; Deng W; Wang M; Yu O; Zhang Z
    PLoS One; 2014; 9(8):e105368. PubMed ID: 25133732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiles of purine metabolism in leaves and roots of Camellia sinensis seedlings.
    Deng WW; Ashihara H
    Plant Cell Physiol; 2010 Dec; 51(12):2105-18. PubMed ID: 21071429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Purine Metabolism in Intact Leaves of Coffea arabica.
    Nazario GM; Lovatt CJ
    Plant Physiol; 1993 Dec; 103(4):1195-1201. PubMed ID: 12232012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of RNAi to confirm theobromine as the major intermediate for caffeine biosynthesis in coffee plants with potential for construction of decaffeinated varieties.
    Ogita S; Uefuji H; Morimoto M; Sano H
    Plant Mol Biol; 2004 Apr; 54(6):931-41. PubMed ID: 15604660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta).
    Perrois C; Strickler SR; Mathieu G; Lepelley M; Bedon L; Michaux S; Husson J; Mueller L; Privat I
    Planta; 2015 Jan; 241(1):179-91. PubMed ID: 25249475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caffeine Content and Related Gene Expression: Novel Insight into Caffeine Metabolism in Camellia Plants Containing Low, Normal, and High Caffeine Concentrations.
    Zhu B; Chen LB; Lu M; Zhang J; Han J; Deng WW; Zhang ZZ
    J Agric Food Chem; 2019 Mar; 67(12):3400-3411. PubMed ID: 30830771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of Caffeine in Leaves of Coffee.
    Ashihara H; Monteiro AM; Gillies FM; Crozier A
    Plant Physiol; 1996 Jul; 111(3):747-753. PubMed ID: 12226327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of two N-methyltransferases from the caffeine biosynthetic pathway.
    McCarthy AA; McCarthy JG
    Plant Physiol; 2007 Jun; 144(2):879-89. PubMed ID: 17434991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted metabolomics and transcript profiling of methyltransferases in three coffee species.
    Montis A; Delporte C; Noda Y; Stoffelen P; Stévigny C; Hermans C; Van Antwerpen P; Souard F
    Plant Sci; 2024 Aug; 345():112117. PubMed ID: 38750798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis).
    Li CF; Zhu Y; Yu Y; Zhao QY; Wang SJ; Wang XC; Yao MZ; Luo D; Li X; Chen L; Yang YJ
    BMC Genomics; 2015 Jul; 16(1):560. PubMed ID: 26220550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution, biosynthesis and catabolism of methylxanthines in plants.
    Ashihara H; Kato M; Crozier A
    Handb Exp Pharmacol; 2011; (200):11-31. PubMed ID: 20859792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants.
    Zhang Y; Fu J; Zhou Q; Li F; Shen Y; Ye Z; Tang D; Chi N; Li L; Ma S; Inayat MA; Guo T; Zhao J; Li P
    J Agric Food Chem; 2022 Mar; 70(10):3239-3251. PubMed ID: 35245048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.