BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 14623114)

  • 21. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.
    Pech-Kú R; Muñoz-Sánchez JA; Monforte-González M; Vázquez-Flota F; Rodas-Junco BA; González-Mendoza VM; Hernández-Sotomayor SMT
    J Inorg Biochem; 2018 Apr; 181():177-182. PubMed ID: 28867596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of Caffeine from Purine Nucleotides in Tea Plant.
    Negishi O; Ozawa T; Imagawa H
    Biosci Biotechnol Biochem; 1992 Jan; 56(3):499-503. PubMed ID: 27321000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.
    Kato M; Kitao N; Ishida M; Morimoto H; Irino F; Mizuno K
    Z Naturforsch C J Biosci; 2010; 65(3-4):245-56. PubMed ID: 20469645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L.
    Mohanpuria P; Kumar V; Ahuja PS; Yadav SK
    Mol Biotechnol; 2011 Jul; 48(3):235-43. PubMed ID: 21181507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Early growth phase and caffeine content response to recent and projected increases in atmospheric carbon dioxide in coffee (Coffea arabica and C. canephora).
    Vega FE; Ziska LH; Simpkins A; Infante F; Davis AP; Rivera JA; Barnaby JY; Wolf J
    Sci Rep; 2020 Apr; 10(1):5875. PubMed ID: 32246092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of adenine by purine permeases of
    Kakegawa H; Shitan N; Kusano H; Ogita S; Yazaki K; Sugiyama A
    Biosci Biotechnol Biochem; 2019 Jul; 83(7):1300-1305. PubMed ID: 30999827
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assay method for monitoring the inhibitory effects of antimetabolites on the activity of inosinate dehydrogenase in intact human CEM lymphocytes.
    Balzarini J; De Clercq E
    Biochem J; 1992 Nov; 287 ( Pt 3)(Pt 3):785-90. PubMed ID: 1359876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism of xanthine and hypoxanthine in the tea plant (Thea sinensis L.).
    Suzuki T; Takahashi E
    Biochem J; 1975 Jan; 146(1):79-85. PubMed ID: 1147906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequential mixture design optimization for divergent metabolite analysis: Enriched carbon dioxide effects on Coffea arabica L. leaves and buds.
    Tormena CD; Marcheafave GG; Rakocevic M; Bruns RE; Scarminio IS
    Talanta; 2019 Jan; 191():382-389. PubMed ID: 30262073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.
    Xia EH; Zhang HB; Sheng J; Li K; Zhang QJ; Kim C; Zhang Y; Liu Y; Zhu T; Li W; Huang H; Tong Y; Nan H; Shi C; Shi C; Jiang JJ; Mao SY; Jiao JY; Zhang D; Zhao Y; Zhao YJ; Zhang LP; Liu YL; Liu BY; Yu Y; Shao SF; Ni DJ; Eichler EE; Gao LZ
    Mol Plant; 2017 Jun; 10(6):866-877. PubMed ID: 28473262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism and ecology of purine alkaloids.
    Anaya AL; Cruz-Ortega R; Waller GR
    Front Biosci; 2006 Sep; 11():2354-70. PubMed ID: 16720319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IMP dehydrogenase and action of antimetabolites in human cultured blast cells.
    Yamada Y; Goto H; Yoshino M; Ogasawara N
    Biochim Biophys Acta; 1990 Mar; 1051(3):209-14. PubMed ID: 1968764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of methionine and biosynthesis of caffeine in the tea plant (Camellia sinensis L.).
    Suzuki T; Takahashi E
    Biochem J; 1976 Nov; 160(2):171-9. PubMed ID: 1008848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomic and phytochemical analysis of the biosynthesis of characteristic constituents in tea (Camellia sinensis) compared with oil tea (Camellia oleifera).
    Tai Y; Wei C; Yang H; Zhang L; Chen Q; Deng W; Wei S; Zhang J; Fang C; Ho C; Wan X
    BMC Plant Biol; 2015 Aug; 15():190. PubMed ID: 26245644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-term inhibition of glutamine synthetase leads to reprogramming of amino acid and lipid metabolism in roots and leaves of tea plant (Camellia sinensis L.).
    Liu MY; Tang D; Shi Y; Ma L; Li Y; Zhang Q; Ruan J
    BMC Plant Biol; 2019 Oct; 19(1):425. PubMed ID: 31615403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L.
    Li X; Zhang L; Ahammed GJ; Li ZX; Wei JP; Shen C; Yan P; Zhang LP; Han WY
    Sci Rep; 2017 Aug; 7(1):7937. PubMed ID: 28801632
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theacrine (1,3,7,9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica var. kucha).
    Zheng XQ; Ye CX; Kato M; Crozier A; Ashihara H
    Phytochemistry; 2002 May; 60(2):129-34. PubMed ID: 12009315
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation of a new dual-functional caffeine synthase gene encoding an enzyme for the conversion of 7-methylxanthine to caffeine from coffee (Coffea arabica L.).
    Mizuno K; Okuda A; Kato M; Yoneyama N; Tanaka H; Ashihara H; Fujimura T
    FEBS Lett; 2003 Jan; 534(1-3):75-81. PubMed ID: 12527364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence and de novo biosynthesis of caffeine and theanine in seedlings of tea (Camellia sinensis).
    Deng WW; Ashihara H
    Nat Prod Commun; 2015 May; 10(5):703-6. PubMed ID: 26058139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of nutrients and secondary compounds of Coffea arabica on the behavior and development of Coccus viridis.
    Fernandes FL; Picanço MC; Fernandes ME; Queiroz RB; Xavier VM; Martinez HE
    Environ Entomol; 2012 Apr; 41(2):333-41. PubMed ID: 22507006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.