BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 14623195)

  • 1. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor.
    Yorimitsu T; Mimaki A; Yakushi T; Homma M
    J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli.
    Lloyd SA; Blair DF
    J Mol Biol; 1997 Mar; 266(4):733-44. PubMed ID: 9102466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus.
    Takekawa N; Kojima S; Homma M
    J Bacteriol; 2014 Apr; 196(7):1377-85. PubMed ID: 24464458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli.
    Yakushi T; Yang J; Fukuoka H; Homma M; Blair DF
    J Bacteriol; 2006 Feb; 188(4):1466-72. PubMed ID: 16452430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor.
    Lloyd SA; Whitby FG; Blair DF; Hill CP
    Nature; 1999 Jul; 400(6743):472-5. PubMed ID: 10440379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA.
    Yorimitsu T; Sowa Y; Ishijima A; Yakushi T; Homma M
    J Mol Biol; 2002 Jul; 320(2):403-13. PubMed ID: 12079395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chimeric N-terminal Escherichia coli--C-terminal Rhodobacter sphaeroides FliG rotor protein supports bidirectional E. coli flagellar rotation and chemotaxis.
    Morehouse KA; Goodfellow IG; Sockett RE
    J Bacteriol; 2005 Mar; 187(5):1695-701. PubMed ID: 15716440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli.
    Gosink KK; Häse CC
    J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor.
    Gohara M; Kobayashi S; Abe-Yoshizumi R; Nonoyama N; Kojima S; Asami Y; Homma M
    J Biochem; 2014 Feb; 155(2):83-9. PubMed ID: 24174548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus.
    Kojima S; Nonoyama N; Takekawa N; Fukuoka H; Homma M
    J Mol Biol; 2011 Nov; 414(1):62-74. PubMed ID: 21986199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus.
    Ogawa R; Abe-Yoshizumi R; Kishi T; Homma M; Kojima S
    J Bacteriol; 2015 Jan; 197(1):63-72. PubMed ID: 25313387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FliG subunit arrangement in the flagellar rotor probed by targeted cross-linking.
    Lowder BJ; Duyvesteyn MD; Blair DF
    J Bacteriol; 2005 Aug; 187(16):5640-7. PubMed ID: 16077109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor.
    Onoue Y; Abe-Yoshizumi R; Gohara M; Kobayashi S; Nishioka N; Kojima S; Homma M
    J Biochem; 2014 Mar; 155(3):207-16. PubMed ID: 24398784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex.
    Brown PN; Terrazas M; Paul K; Blair DF
    J Bacteriol; 2007 Jan; 189(2):305-12. PubMed ID: 17085573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the flagellar motor composed of functional GFP-fusion derivatives of FliG in the Na
    Koike M; Nishioka N; Kojima S; Homma M
    Biophysics (Nagoya-shi); 2011; 7():59-67. PubMed ID: 27857593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concerted effects of amino acid substitutions in conserved charged residues and other residues in the cytoplasmic domain of PomA, a stator component of Na+-driven flagella.
    Fukuoka H; Yakushi T; Homma M
    J Bacteriol; 2004 Oct; 186(20):6749-58. PubMed ID: 15466026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN.
    Lloyd SA; Tang H; Wang X; Billings S; Blair DF
    J Bacteriol; 1996 Jan; 178(1):223-31. PubMed ID: 8550421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor.
    Onoue Y; Takekawa N; Nishikino T; Kojima S; Homma M
    Microbiologyopen; 2018 Aug; 7(4):e00587. PubMed ID: 29573373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
    Morimoto YV; Nakamura S; Hiraoka KD; Namba K; Minamino T
    J Bacteriol; 2013 Feb; 195(3):474-81. PubMed ID: 23161029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex.
    Sakai T; Miyata T; Terahara N; Mori K; Inoue Y; Morimoto YV; Kato T; Namba K; Minamino T
    mBio; 2019 Apr; 10(2):. PubMed ID: 30940700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.