BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 14623195)

  • 21. Rusty, jammed, and well-oiled hinges: Mutations affecting the interdomain region of FliG, a rotor element of the Escherichia coli flagellar motor.
    Van Way SM; Millas SG; Lee AH; Manson MD
    J Bacteriol; 2004 May; 186(10):3173-81. PubMed ID: 15126479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB.
    Togashi F; Yamaguchi S; Kihara M; Aizawa SI; Macnab RM
    J Bacteriol; 1997 May; 179(9):2994-3003. PubMed ID: 9139919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of the bi-directional bacterial flagellar motor.
    Morimoto YV; Minamino T
    Biomolecules; 2014 Feb; 4(1):217-34. PubMed ID: 24970213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation.
    Onoue Y; Kojima S; Homma M
    J Biochem; 2015 Dec; 158(6):523-9. PubMed ID: 26142283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple conformations of the FliG C-terminal domain provide insight into flagellar motor switching.
    Lam KH; Ip WS; Lam YW; Chan SO; Ling TK; Au SW
    Structure; 2012 Feb; 20(2):315-25. PubMed ID: 22325779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-Folding of a FliF-FliG Split Domain Forms the Basis of the MS:C Ring Interface within the Bacterial Flagellar Motor.
    Lynch MJ; Levenson R; Kim EA; Sircar R; Blair DF; Dahlquist FW; Crane BR
    Structure; 2017 Feb; 25(2):317-328. PubMed ID: 28089452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural insights into the interaction between the bacterial flagellar motor proteins FliF and FliG.
    Levenson R; Zhou H; Dahlquist FW
    Biochemistry; 2012 Jun; 51(25):5052-60. PubMed ID: 22670715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutational analysis of charged residues in the cytoplasmic loops of MotA and MotP in the Bacillus subtilis flagellar motor.
    Takahashi Y; Ito M
    J Biochem; 2014 Oct; 156(4):211-20. PubMed ID: 24771657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
    Braun TF; Poulson S; Gully JB; Empey JC; Van Way S; Putnam A; Blair DF
    J Bacteriol; 1999 Jun; 181(11):3542-51. PubMed ID: 10348868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rotational direction of flagellar motor from the conformation of FliG middle domain in marine Vibrio.
    Nishikino T; Hijikata A; Miyanoiri Y; Onoue Y; Kojima S; Shirai T; Homma M
    Sci Rep; 2018 Dec; 8(1):17793. PubMed ID: 30542147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB.
    Zhou J; Sharp LL; Tang HL; Lloyd SA; Billings S; Braun TF; Blair DF
    J Bacteriol; 1998 May; 180(10):2729-35. PubMed ID: 9573160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Domain analysis of the FliM protein of Escherichia coli.
    Mathews MA; Tang HL; Blair DF
    J Bacteriol; 1998 Nov; 180(21):5580-90. PubMed ID: 9791106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of PomA mutants defective in the functional assembly of the Na(+)-driven flagellar motor in Vibrio alginolyticus.
    Takekawa N; Li N; Kojima S; Homma M
    J Bacteriol; 2012 Apr; 194(8):1934-9. PubMed ID: 22343296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and Functional Analysis of the C-Terminal Region of FliG, an Essential Motor Component of Vibrio Na
    Miyanoiri Y; Hijikata A; Nishino Y; Gohara M; Onoue Y; Kojima S; Kojima C; Shirai T; Kainosho M; Homma M
    Structure; 2017 Oct; 25(10):1540-1548.e3. PubMed ID: 28919442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli.
    Marykwas DL; Berg HC
    J Bacteriol; 1996 Mar; 178(5):1289-94. PubMed ID: 8631704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
    Obara M; Yakushi T; Kojima S; Homma M
    J Bacteriol; 2008 May; 190(10):3565-71. PubMed ID: 18326582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Architecture of the flagellar rotor.
    Paul K; Gonzalez-Bonet G; Bilwes AM; Crane BR; Blair D
    EMBO J; 2011 Jun; 30(14):2962-71. PubMed ID: 21673656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insertional inactivation of genes encoding components of the sodium-type flagellar motor and switch of Vibrio parahaemolyticus.
    Boles BR; McCarter LL
    J Bacteriol; 2000 Feb; 182(4):1035-45. PubMed ID: 10648530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct observation of steps in rotation of the bacterial flagellar motor.
    Sowa Y; Rowe AD; Leake MC; Yakushi T; Homma M; Ishijima A; Berry RM
    Nature; 2005 Oct; 437(7060):916-9. PubMed ID: 16208378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor.
    Zhou J; Blair DF
    J Mol Biol; 1997 Oct; 273(2):428-39. PubMed ID: 9344750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.