These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 14623469)

  • 1. Multi-analyte assay for triazines using cross-reactive antibodies and neural networks.
    Reder S; Dieterle F; Jansen H; Alcock S; Gauglitz G
    Biosens Bioelectron; 2003 Dec; 19(5):447-55. PubMed ID: 14623469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the RIver ANAlyser (RIANA), an optical immunosensor.
    Rodriguez-Mozaz S; Reder S; de Alda ML; Gauglitz G; Barceló D
    Biosens Bioelectron; 2004 Feb; 19(7):633-40. PubMed ID: 14709380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a sequential injection chromatography (SIC) method for determination of simazine, atrazine, and propazine.
    Dos Santos LB; Infante CM; Masini JC
    J Sep Sci; 2009 Feb; 32(4):494-500. PubMed ID: 19212976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of antibodies and development of a sensitive immunoassay with fluorescence detection for triazine herbicides.
    Herranz S; Ramón-Azcón J; Benito-Peña E; Marazuela MD; Marco MP; Moreno-Bondi MC
    Anal Bioanal Chem; 2008 Jul; 391(5):1801-12. PubMed ID: 18292992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Verification of performance with the automated direct optical TIRF immunosensor (River Analyser) in single and multi-analyte assays with real water samples.
    Tschmelak J; Proll G; Gauglitz G
    Biosens Bioelectron; 2004 Nov; 20(4):743-52. PubMed ID: 15522589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microchip capillary electrophoresis based electroanalysis of triazine herbicides.
    Islam K; Chand R; Han D; Kim YS
    Bull Environ Contam Toxicol; 2015 Jan; 94(1):41-5. PubMed ID: 25231112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a portable immunoextraction-reversed-phase liquid chromatography system for field studies of herbicide residues.
    Nelson MA; Gates A; Dodlinger M; Hage DS
    Anal Chem; 2004 Feb; 76(3):805-13. PubMed ID: 14750879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic enzyme immunosensors with immobilised protein A and G using chemiluminescence detection.
    Yakovleva J; Davidsson R; Bengtsson M; Laurell T; Emnéus J
    Biosens Bioelectron; 2003 Oct; 19(1):21-34. PubMed ID: 14558995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of atrazine, deethylatrazine and simazine in water at parts-per-trillion levels using solid-phase extraction and gas chromatography/ion trap mass spectrometry.
    Ma WT; Cai Z; Jiang GB
    Rapid Commun Mass Spectrom; 2003; 17(24):2707-12. PubMed ID: 14673817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology.
    Peña-Vázquez E; Maneiro E; Pérez-Conde C; Moreno-Bondi MC; Costas E
    Biosens Bioelectron; 2009 Aug; 24(12):3538-43. PubMed ID: 19497732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micro-immuno supported liquid membrane assay (mu-ISLMA).
    Tudorache M; Emnéus J
    Biosens Bioelectron; 2006 Feb; 21(8):1513-20. PubMed ID: 16102960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous voltammetric determination of four triazine herbicides in water samples with the aid of chemometrics.
    Qiu P; Ni Y; Kokot S
    J Environ Sci Health B; 2014; 49(10):722-9. PubMed ID: 25065823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubility of triazine pesticides in pure and modified subcritical water.
    Curren MS; King JW
    Anal Chem; 2001 Feb; 73(4):740-5. PubMed ID: 11248886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous determination of paraquat and atrazine in water samples with a white light reflectance spectroscopy biosensor.
    Stavra E; Petrou PS; Koukouvinos G; Kiritsis C; Pirmettis I; Papadopoulos M; Goustouridis D; Economou A; Misiakos K; Raptis I; Kakabakos SE
    J Hazard Mater; 2018 Oct; 359():67-75. PubMed ID: 30014916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of three s-triazines with humic acids of different structure.
    Celano G; Smejkalová D; Spaccini R; Piccolo A
    J Agric Food Chem; 2008 Aug; 56(16):7360-6. PubMed ID: 18656922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of immunoassay sensitivity by molecular modification of competitors.
    Jockers R; Bier FF; Schmid RD
    J Immunol Methods; 1993 Aug; 163(2):161-7. PubMed ID: 8354885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Procedures for analysis of atrazine and simazine in environmental matrices.
    Barchańska H; Baranowska I
    Rev Environ Contam Toxicol; 2009; 200():53-84. PubMed ID: 19680611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of europium(III) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide.
    Cummins CM; Koivunen ME; Stephanian A; Gee SJ; Hammock BD; Kennedy IM
    Biosens Bioelectron; 2006 Jan; 21(7):1077-85. PubMed ID: 16368482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force spectroscopy-based study of antibody pesticide interactions for characterization of immunosensor surface.
    Kaur J; Singh KV; Schmid AH; Varshney GC; Suri CR; Raje M
    Biosens Bioelectron; 2004 Sep; 20(2):284-93. PubMed ID: 15308233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of trace atrazine and simazine in environmental samples by liquid chromatography-fluorescence detection with pre-column derivatization reaction.
    Gong A; Ye C
    J Chromatogr A; 1998 Dec; 827(1):57-63. PubMed ID: 9894345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.