BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 14623825)

  • 1. Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development.
    Macatee TL; Hammond BP; Arenkiel BR; Francis L; Frank DU; Moon AM
    Development; 2003 Dec; 130(25):6361-74. PubMed ID: 14623825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome.
    Frank DU; Fotheringham LK; Brewer JA; Muglia LJ; Tristani-Firouzi M; Capecchi MR; Moon AM
    Development; 2002 Oct; 129(19):4591-603. PubMed ID: 12223415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.
    Park EJ; Ogden LA; Talbot A; Evans S; Cai CL; Black BL; Frank DU; Moon AM
    Development; 2006 Jun; 133(12):2419-33. PubMed ID: 16720879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharyngeal epithelial deletion of Tbx1 causes caudal pharyngeal arch defect but not cardiac conotruncal anomaly.
    Wei L; Wang W; Yang J; Huang X; Baldini A; Zhang Z
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1315-1322. PubMed ID: 33066956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse.
    Abu-Issa R; Smyth G; Smoak I; Yamamura K; Meyers EN
    Development; 2002 Oct; 129(19):4613-25. PubMed ID: 12223417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonic hedgehog in the pharyngeal endoderm controls arch pattern via regulation of Fgf8 in head ectoderm.
    Haworth KE; Wilson JM; Grevellec A; Cobourne MT; Healy C; Helms JA; Sharpe PT; Tucker AS
    Dev Biol; 2007 Mar; 303(1):244-58. PubMed ID: 17187772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes.
    Moon AM; Guris DL; Seo JH; Li L; Hammond J; Talbot A; Imamoto A
    Dev Cell; 2006 Jan; 10(1):71-80. PubMed ID: 16399079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An essential role for Fgfs in endodermal pouch formation influences later craniofacial skeletal patterning.
    Crump JG; Maves L; Lawson ND; Weinstein BM; Kimmel CB
    Development; 2004 Nov; 131(22):5703-16. PubMed ID: 15509770
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Phillips HM; Stothard CA; Shaikh Qureshi WM; Kousa AI; Briones-Leon JA; Khasawneh RR; O'Loughlin C; Sanders R; Mazzotta S; Dodds R; Seidel K; Bates T; Nakatomi M; Cockell SJ; Schneider JE; Mohun TJ; Maehr R; Kist R; Peters H; Bamforth SD
    Development; 2019 Sep; 146(18):. PubMed ID: 31444215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of Tbx1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy.
    Aggarwal VS; Liao J; Bondarev A; Schimmang T; Lewandoski M; Locker J; Shanske A; Campione M; Morrow BE
    Hum Mol Genet; 2006 Nov; 15(21):3219-28. PubMed ID: 17000704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGF8 dose-dependent regulation of embryonic submandibular salivary gland morphogenesis.
    Jaskoll T; Witcher D; Toreno L; Bringas P; Moon AM; Melnick M
    Dev Biol; 2004 Apr; 268(2):457-69. PubMed ID: 15063181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse.
    Brown CB; Wenning JM; Lu MM; Epstein DJ; Meyers EN; Epstein JA
    Dev Biol; 2004 Mar; 267(1):190-202. PubMed ID: 14975726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetic link between Tbx1 and fibroblast growth factor signaling.
    Vitelli F; Taddei I; Morishima M; Meyers EN; Lindsay EA; Baldini A
    Development; 2002 Oct; 129(19):4605-11. PubMed ID: 12223416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries.
    Watanabe Y; Miyagawa-Tomita S; Vincent SD; Kelly RG; Moon AM; Buckingham ME
    Circ Res; 2010 Feb; 106(3):495-503. PubMed ID: 20035084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fgf8 is required for anterior heart field development.
    Ilagan R; Abu-Issa R; Brown D; Yang YP; Jiao K; Schwartz RJ; Klingensmith J; Meyers EN
    Development; 2006 Jun; 133(12):2435-45. PubMed ID: 16720880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches.
    Wendling O; Dennefeld C; Chambon P; Mark M
    Development; 2000 Apr; 127(8):1553-62. PubMed ID: 10725232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner.
    Chen D; Wang X; Liang D; Gordon J; Mittal A; Manley N; Degenhardt K; Astrof S
    Dev Biol; 2015 Nov; 407(2):195-210. PubMed ID: 26434918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development.
    Garg V; Yamagishi C; Hu T; Kathiriya IS; Yamagishi H; Srivastava D
    Dev Biol; 2001 Jul; 235(1):62-73. PubMed ID: 11412027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors.
    Hu T; Yamagishi H; Maeda J; McAnally J; Yamagishi C; Srivastava D
    Development; 2004 Nov; 131(21):5491-502. PubMed ID: 15469978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the vascular endothelial growth factor isoforms in retinal angiogenesis and DiGeorge syndrome.
    Stalmans I
    Verh K Acad Geneeskd Belg; 2005; 67(4):229-76. PubMed ID: 16334858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.