These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
581 related articles for article (PubMed ID: 14623976)
1. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Rawat R; Whitty A; Tonge PJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13881-6. PubMed ID: 14623976 [TBL] [Abstract][Full Text] [Related]
2. Crystallographic studies on the binding of isonicotinyl-NAD adduct to wild-type and isoniazid resistant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Dias MV; Vasconcelos IB; Prado AM; Fadel V; Basso LA; de Azevedo WF; Santos DS J Struct Biol; 2007 Sep; 159(3):369-80. PubMed ID: 17588773 [TBL] [Abstract][Full Text] [Related]
3. Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. Oliveira JS; Pereira JH; Canduri F; Rodrigues NC; de Souza ON; de Azevedo WF; Basso LA; Santos DS J Mol Biol; 2006 Jun; 359(3):646-66. PubMed ID: 16647717 [TBL] [Abstract][Full Text] [Related]
4. Probing mechanisms of resistance to the tuberculosis drug isoniazid: Conformational changes caused by inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis. Kruh NA; Rawat R; Ruzsicska BP; Tonge PJ Protein Sci; 2007 Aug; 16(8):1617-27. PubMed ID: 17600151 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Parikh SL; Xiao G; Tonge PJ Biochemistry; 2000 Jul; 39(26):7645-50. PubMed ID: 10869170 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances and Structural Features of Enoyl-ACP Reductase Inhibitors of Mycobacterium tuberculosis. Inturi B; Pujar GV; Purohit MN Arch Pharm (Weinheim); 2016 Nov; 349(11):817-826. PubMed ID: 27775177 [TBL] [Abstract][Full Text] [Related]
7. Recent progress in the identification and development of InhA direct inhibitors of Mycobacterium tuberculosis. Lu XY; You QD; Chen YD Mini Rev Med Chem; 2010 Mar; 10(3):181-92. PubMed ID: 20408801 [TBL] [Abstract][Full Text] [Related]
8. Molecular Dynamics Assisted Mechanistic Study of Isoniazid-Resistance against Mycobacterium tuberculosis InhA. Kumar V; Sobhia ME PLoS One; 2015; 10(12):e0144635. PubMed ID: 26658674 [TBL] [Abstract][Full Text] [Related]
9. Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. Stigliani JL; Arnaud P; Delaine T; Bernardes-Génisson V; Meunier B; Bernadou J J Mol Graph Model; 2008 Nov; 27(4):536-45. PubMed ID: 18955002 [TBL] [Abstract][Full Text] [Related]
11. Computational approach identifies protein off-targets for Isoniazid-NAD adduct: hypothesizing a possible drug resistance mechanism in Hassan S; Sudhakar V; Nancy Mary MB; Babu R; Doble M; Dadar M; Hanna LE J Biomol Struct Dyn; 2020 Apr; 38(6):1697-1710. PubMed ID: 31094664 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Zhao X; Yu H; Yu S; Wang F; Sacchettini JC; Magliozzo RS Biochemistry; 2006 Apr; 45(13):4131-40. PubMed ID: 16566587 [TBL] [Abstract][Full Text] [Related]
13. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Cade CE; Dlouhy AC; Medzihradszky KF; Salas-Castillo SP; Ghiladi RA Protein Sci; 2010 Mar; 19(3):458-74. PubMed ID: 20054829 [TBL] [Abstract][Full Text] [Related]
14. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Vilchèze C; Jacobs WR Microbiol Spectr; 2014 Aug; 2(4):MGM2-0014-2013. PubMed ID: 26104204 [TBL] [Abstract][Full Text] [Related]
15. Slow-onset inhibition of 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex. Oliveira JS; de Sousa EH; de Souza ON; Moreira IS; Santos DS; Basso LA Curr Pharm Des; 2006; 12(19):2409-24. PubMed ID: 16842188 [TBL] [Abstract][Full Text] [Related]
16. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. Tseng ST; Tai CH; Li CR; Lin CF; Shi ZY J Microbiol Immunol Infect; 2015 Jun; 48(3):249-55. PubMed ID: 24184004 [TBL] [Abstract][Full Text] [Related]
17. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. Perryman AL; Yu W; Wang X; Ekins S; Forli S; Li SG; Freundlich JS; Tonge PJ; Olson AJ J Chem Inf Model; 2015 Mar; 55(3):645-59. PubMed ID: 25636146 [TBL] [Abstract][Full Text] [Related]
19. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Vilchèze C; Wang F; Arai M; Hazbón MH; Colangeli R; Kremer L; Weisbrod TR; Alland D; Sacchettini JC; Jacobs WR Nat Med; 2006 Sep; 12(9):1027-9. PubMed ID: 16906155 [TBL] [Abstract][Full Text] [Related]
20. Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis. Nguyen M; Quémard A; Broussy S; Bernadou J; Meunier B Antimicrob Agents Chemother; 2002 Jul; 46(7):2137-44. PubMed ID: 12069966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]