These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 14624003)

  • 1. The ability to form full-length intron RNA circles is a general property of nuclear group I introns.
    Nielsen H; Fiskaa T; Birgisdottir AB; Haugen P; Einvik C; Johansen S
    RNA; 2003 Dec; 9(12):1464-75. PubMed ID: 14624003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular characterization of both transesterification reactions of the group II intron circularization pathway.
    LaRoche-Johnston F; Monat C; Verreault E; Cousineau B
    Nucleic Acids Res; 2021 Jul; 49(12):6996-7010. PubMed ID: 34157113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excision of the Sinorhizobium meliloti group II intron RmInt1 as circles in vivo.
    Molina-Sánchez MD; Martinez-Abarca F; Toro N
    J Biol Chem; 2006 Sep; 281(39):28737-44. PubMed ID: 16887813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the self-splicing products of a mobile intron from the nuclear rDNA of Physarum polycephalum.
    Ruoff B; Johansen S; Vogt VM
    Nucleic Acids Res; 1992 Nov; 20(22):5899-906. PubMed ID: 1461722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolytic cleavage by a group I intron ribozyme is dependent on RNA structures not important for splicing.
    Haugen P; Andreassen M; Birgisdottir AB; Johansen S
    Eur J Biochem; 2004 Mar; 271(5):1015-24. PubMed ID: 15009213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse splicing of a discontinuous pre-mRNA intron generates a circular exon in a HeLa cell nuclear extract.
    Braun S; Domdey H; Wiebauer K
    Nucleic Acids Res; 1996 Nov; 24(21):4152-7. PubMed ID: 8932365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of P9 and stem-loop structures downstream from the catalytic core affects both 5' and 3' splicing activities in a group-I intron.
    Caprara MG; Waring RB
    Gene; 1994 May; 143(1):29-37. PubMed ID: 8200535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site.
    Been MD; Perrotta AT
    Science; 1991 Apr; 252(5004):434-7. PubMed ID: 2017681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularization pathway of a bacterial group II intron.
    Monat C; Cousineau B
    Nucleic Acids Res; 2016 Feb; 44(4):1845-53. PubMed ID: 26673697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs.
    LaRoche-Johnston F; Monat C; Coulombe S; Cousineau B
    PLoS Genet; 2018 Nov; 14(11):e1007792. PubMed ID: 30462638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlocked circle formation by group I introns: structural requirements and mechanism.
    Winter AJ; Alkema MJ; Groot Koerkamp MJ; van der Horst G; Mul Y; Tabak HF
    Nucleic Acids Res; 1993 Jul; 21(14):3217-26. PubMed ID: 8341596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Group I intron ribozymes.
    Nielsen H
    Methods Mol Biol; 2012; 848():73-89. PubMed ID: 22315064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway.
    Monat C; Quiroga C; Laroche-Johnston F; Cousineau B
    RNA; 2015 Jul; 21(7):1286-93. PubMed ID: 25956521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution.
    Lundblad EW; Einvik C; Rønning S; Haugli K; Johansen S
    Mol Biol Evol; 2004 Jul; 21(7):1283-93. PubMed ID: 15034133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple physical forms of excised group II intron RNAs in wheat mitochondria.
    Li-Pook-Than J; Bonen L
    Nucleic Acids Res; 2006; 34(9):2782-90. PubMed ID: 16717283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the self-splicing products of two complex Naegleria LSU rDNA group I introns containing homing endonuclease genes.
    Haugen P; De Jonckheere JF; Johansen S
    Eur J Biochem; 2002 Mar; 269(6):1641-9. PubMed ID: 11895434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons.
    Partono S; Lewin AS
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8192-6. PubMed ID: 2236031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.