These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 14624035)

  • 1. Axopodial contraction in the heliozoon Raphidiophrys contractilis requires extracellular Ca2+.
    Khan SM; Arikawa M; Omura G; Suetomo Y; Kakuta S; Suzaki T
    Zoolog Sci; 2003 Nov; 20(11):1367-72. PubMed ID: 14624035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ultrastructure of contractile tubules in the heliozoon Actinophrys sol and their possible involvement in rapid axopodial contraction.
    Kinoshita E; Shigenaka Y; Suzaki T
    J Eukaryot Microbiol; 2001; 48(5):519-26. PubMed ID: 11596916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axopodial degradation in the heliozoon Raphidiophrys contractilis: a novel bioassay system for detecting heavy metal toxicity in an aquatic environment.
    Khan SM; Yoshimura C; Arikawa M; Omura G; Nishiyama S; Suetomo Y; Kakuta S; Suzaki T
    Environ Sci; 2006; 13(4):193-200. PubMed ID: 17095991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivation of Ca2+-dependent cytoplasmic contraction in permeabilized cell models of the heliozoon Echinosphaerium akamae.
    Arikawa M; Suzaki T
    Cell Motil Cytoskeleton; 2002 Dec; 53(4):267-72. PubMed ID: 12378536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food capture and ingestion in the large heliozoan, Echinosphaerium nucleofilum.
    Suzaki T; Shigenaka Y; Watanabe S; Toyohara A
    J Cell Sci; 1980 Apr; 42():61-79. PubMed ID: 7400244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo transcriptome analysis of the centrohelid Raphidocystis contractilis to identify genes involved in microtubule-based motility.
    Ikeda R; Sakagami T; Hamada M; Sakamoto T; Hatabu T; Saito N; Ando M
    J Eukaryot Microbiol; 2023 Mar; 70(2):e12955. PubMed ID: 36409155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-dependent in vitro contractility of a precipitate isolated from an extract of the heliozoon Actinophrys sol.
    Arikawa M; Saito A; Omura G; Khan SM; Suetomo Y; Kakuta S; Suzaki T
    Cell Motil Cytoskeleton; 2006 Feb; 63(2):57-65. PubMed ID: 16362955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of contractile tubules showing how they contract in the heliozoan Echinosphaerium.
    Matsuoka T; Shigenaka Y; Naitoh Y
    Cell Struct Funct; 1985 Mar; 10(1):63-70. PubMed ID: 3995604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the cytoskeleton in heliozoa: 2. Measurement of the force of rapid axopodial contraction in Echinosphaerium.
    Suzaki T; Ando M; Ishigame K; Shigenaka Y; Sugiyama M
    Eur J Protistol; 1992 Nov; 28(4):430-3. PubMed ID: 23195343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent nuclear contraction in the heliozoon Actinophrys sol.
    Arikawa M; Saito A; Omura G; Mostafa Kamal Khan SM; Suetomo Y; Kakuta S; Suzaki T
    Cell Calcium; 2005 Nov; 38(5):447-55. PubMed ID: 16099499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unidirectional motility occurring in association with the axopodial membrane of Echinosphaerium nucleofilum.
    Bloodgood RA
    Cell Biol Int Rep; 1978 Mar; 2(2):171-6. PubMed ID: 667960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motility in Echinosphaerium nucleofilum. I. An analysis of particle motions in the axopodia and a direct test of the involvement of the axoneme.
    Edds KT
    J Cell Biol; 1975 Jul; 66(1):145-55. PubMed ID: 1141372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett).
    Tilney LG; Hiramoto Y; Marsland D
    J Cell Biol; 1966 Apr; 29(1):77-95. PubMed ID: 5920198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary study of the motility processes in the stalked heliozoan Actinocoryne contractilis.
    Febvre-Chevalier C
    Biosystems; 1981; 14(3-4):337-43. PubMed ID: 7337812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic streaming in a heliozoan.
    Edds KT
    Biosystems; 1981; 14(3-4):371-6. PubMed ID: 7199950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia.
    Tilney LG; Porter KR
    J Cell Biol; 1967 Jul; 34(1):327-43. PubMed ID: 6033539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fine structure of the centrohelidian heliozoan Heterophrys marina.
    Bardele CF
    Cell Tissue Res; 1975 Aug; 161(1):85-102. PubMed ID: 1149140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ultrastructure of the "little granule" on the axopodia of Raphidiophrys (Centrohelida, Heliozoa)].
    Bardele CF
    Z Naturforsch B; 1969 Mar; 24(3):362-3. PubMed ID: 4388755
    [No Abstract]   [Full Text] [Related]  

  • 19. Microtubule dissassembly in vivo: intercalary destabilization and breakdown of microtubules in the heliozoan Actinocoryne contractilis.
    Febvre-Chevalier C; Febvre J
    J Cell Biol; 1992 Aug; 118(3):585-94. PubMed ID: 1639845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubules in protozoan cells. III. Ultrastructural changes during disintegration and reformation of heliozoan microtubules.
    Toyohara A; Shigenaka Y; Mohri H
    J Cell Sci; 1978 Aug; 32():87-98. PubMed ID: 701407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.