These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 14624408)

  • 1. Intravesicular glucose modulates magnesium2+ transport in liver plasma membrane from streptozotocin-treated rats.
    Cefaratti C; Romani A
    Metabolism; 2003 Nov; 52(11):1464-70. PubMed ID: 14624408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered Mg2+ transport across liver plasma membrane from streptozotocin-treated rats.
    Cefaratti C; McKinnis A; Romani A
    Mol Cell Biochem; 2004 Jul; 262(1-2):145-54. PubMed ID: 15532719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells.
    Fagan TE; Cefaratti C; Romani A
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E184-93. PubMed ID: 14701664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver.
    Cefaratti C; Romani A; Scarpa A
    Am J Physiol; 1998 Oct; 275(4):C995-C1008. PubMed ID: 9755053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of ethanol administration on Mg2+ transport across liver plasma membrane.
    Cefaratti C; Young A; Romani A
    Alcohol; 2005 May; 36(1):5-18. PubMed ID: 16257349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles.
    Cefaratti C; Romani AM
    Mol Cell Biochem; 2007 Sep; 303(1-2):63-72. PubMed ID: 17415622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of glucose in modulating Mg2+ homeostasis in liver cells from starved rats.
    Torres LM; Youngner J; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2005 Feb; 288(2):G195-206. PubMed ID: 15647605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Na+/alanine cotransport in liver sinusoidal membrane vesicles by internal divalent cations.
    Simmons TW; Moseley RH; Boyer JL; Ballatori N
    Biochim Biophys Acta; 1990 Apr; 1023(3):462-8. PubMed ID: 2110482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na(+)-dependent transport mechanism.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1145-56. PubMed ID: 11352807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal stimulation of Mg2+ uptake in hepatocytes. Regulation by plasma membrane and intracellular organelles.
    Romani A; Marfella C; Scarpa A
    J Biol Chem; 1993 Jul; 268(21):15489-95. PubMed ID: 8340377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes.
    Blitzer BL; Hostetler BR; Scott KA
    J Clin Invest; 1989 Apr; 83(4):1319-25. PubMed ID: 2703534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute effect of EtOH on Mg2+ homeostasis in liver cells: evidence for the activation of an Na+/Mg2+ exchanger.
    Tessman PA; Romani A
    Am J Physiol; 1998 Nov; 275(5):G1106-16. PubMed ID: 9815041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of external magnesium on intracellular free sodium: Na+ flux via Na+/Mg2+ antiport is masked by other Na+ transport systems in rat cardiac myocytes.
    Odblom MP; Handy RD
    Magnes Res; 2001 Mar; 14(1-2):3-9. PubMed ID: 11300619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ATP on Na+ transport and membrane potential in inside-out renal basolateral vesicles.
    Boumendil-Podevin EF; Podevin RA
    Biochim Biophys Acta; 1983 Feb; 728(1):39-49. PubMed ID: 6830772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells.
    Raftos JE; Lew VL
    J Physiol; 1995 Nov; 489 ( Pt 1)(Pt 1):63-72. PubMed ID: 8583416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of the Na(+)-H+ exchanger modulates angiotensin II-stimulated Na(+)-dependent Mg2+ transport in vascular smooth muscle cells in genetic hypertension.
    Touyz RM; Schiffrin EL
    Hypertension; 1999 Sep; 34(3):442-9. PubMed ID: 10489391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of Na+/Mg²+ exchanger stoichiometry ratio by Cl⁻ ions in basolateral rat liver plasma membrane vesicles.
    Cefaratti C; Romani A
    Mol Cell Biochem; 2011 May; 351(1-2):133-42. PubMed ID: 21234652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.
    Stout AK; Li-Smerin Y; Johnson JW; Reynolds IJ
    J Physiol; 1996 May; 492 ( Pt 3)(Pt 3):641-57. PubMed ID: 8734978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.