BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 14624498)

  • 1. Effect of calcium salt content in the poly(epsilon-caprolactone)/silica nanocomposite on the nucleation and growth behavior of apatite layer.
    Rhee SH
    J Biomed Mater Res A; 2003 Dec; 67(4):1131-8. PubMed ID: 14624498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple surface modification of poly(epsilon-caprolactone) to induce its apatite-forming ability.
    Oyane A; Uchida M; Yokoyama Y; Choong C; Triffitt J; Ito A
    J Biomed Mater Res A; 2005 Oct; 75(1):138-45. PubMed ID: 16044403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications.
    Chen XB; Li YC; Du Plessis J; Hodgson PD; Wen C
    Acta Biomater; 2009 Jun; 5(5):1808-20. PubMed ID: 19223253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute.
    Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ
    Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropattern formation of apatite by combination of a biomimetic process and transcription of resist pattern.
    Ozawa N; Yao T
    J Biomed Mater Res; 2002 Dec; 62(4):579-86. PubMed ID: 12221706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric.
    Seol YJ; Kim KH; Kim IA; Rhee SH
    J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid.
    Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A
    Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of molecular weight of poly(epsilon-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(epsilon-caprolactone)/silica nano-hybrid materials.
    Rhee SH
    Biomaterials; 2003 May; 24(10):1721-7. PubMed ID: 12593953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of calcium titanate as apatite growth promoter.
    Coreño J; Coreño O
    J Biomed Mater Res A; 2005 Nov; 75(2):478-84. PubMed ID: 16088899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.
    Wei J; Chen F; Shin JW; Hong H; Dai C; Su J; Liu C
    Biomaterials; 2009 Feb; 30(6):1080-8. PubMed ID: 19019424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative in vitro and in vivo studies using a bioactive poly(epsilon-caprolactone)-organosiloxane nanohybrid containing calcium salt.
    Yoo JJ; Lee JE; Kim HJ; Kim SJ; Lim JH; Lee SJ; Lee JI; Lee YK; Lim BS; Rhee SH
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):189-98. PubMed ID: 17385222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the in vitro apatite-forming ability of poly(epsilon-caprolactone)-silica sol-gels using three osteoconductivity tests (static, dynamic, and alternate soaking process).
    Eglin D; Ali SA; Perry CC
    J Biomed Mater Res A; 2004 Jun; 69(4):718-27. PubMed ID: 15162414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluations of bioactivity and mechanical properties of poly (epsilon-caprolactone)/silica nanocomposite following heat treatment.
    Yoo JJ; Rhee SH
    J Biomed Mater Res A; 2004 Mar; 68(3):401-10. PubMed ID: 14762919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study.
    Yang Z; Si S; Zeng X; Zhang C; Dai H
    Acta Biomater; 2008 May; 4(3):560-8. PubMed ID: 18053780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acidic degradation products of poly(lactic-co-glycolic)acid on the apatite-forming ability of poly(lactic-co-glycolic)acid-siloxane nanohybrid material.
    Rhee SH; Lee SJ
    J Biomed Mater Res A; 2007 Dec; 83(3):799-805. PubMed ID: 17559116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions.
    Oliveira AL; Costa SA; Sousa RA; Reis RL
    Acta Biomater; 2009 Jun; 5(5):1626-38. PubMed ID: 19188103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment.
    Leonor IB; Baran ET; Kawashita M; Reis RL; Kokubo T; Nakamura T
    Acta Biomater; 2008 Sep; 4(5):1349-59. PubMed ID: 18400572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical properties and bioactivity of poly(methyl methacrylate)/SiO(2)-CaO nanocomposite.
    Lee KH; Rhee SH
    Biomaterials; 2009 Jul; 30(20):3444-9. PubMed ID: 19304322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic deposition of apatite coating on surface-modified NiTi alloy.
    Gu YW; Tay BY; Lim CS; Yong MS
    Biomaterials; 2005 Dec; 26(34):6916-23. PubMed ID: 15941583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.