These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 14624518)
1. Thermally reversible polymer gel for chondrocyte culture. Au A; Ha J; Polotsky A; Krzyminski K; Gutowska A; Hungerford DS; Frondoza CG J Biomed Mater Res A; 2003 Dec; 67(4):1310-9. PubMed ID: 14624518 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of thermoreversible polymers containing fibroblast growth factor 9 (FGF-9) for chondrocyte culture. Au A; Polotsky A; Krzyminski K; Gutowska A; Hungerford DS; Frondoza CG J Biomed Mater Res A; 2004 May; 69(2):367-72. PubMed ID: 15058010 [TBL] [Abstract][Full Text] [Related]
3. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850 [TBL] [Abstract][Full Text] [Related]
4. Bovine chondrocyte behaviour in three-dimensional type I collagen gel in terms of gel contraction, proliferation and gene expression. Galois L; Hutasse S; Cortial D; Rousseau CF; Grossin L; Ronziere MC; Herbage D; Freyria AM Biomaterials; 2006 Jan; 27(1):79-90. PubMed ID: 16026827 [TBL] [Abstract][Full Text] [Related]
5. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. Li WJ; Danielson KG; Alexander PG; Tuan RS J Biomed Mater Res A; 2003 Dec; 67(4):1105-14. PubMed ID: 14624495 [TBL] [Abstract][Full Text] [Related]
6. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice]. Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021 [TBL] [Abstract][Full Text] [Related]
7. The regulation of expanded human nasal chondrocyte re-differentiation capacity by substrate composition and gas plasma surface modification. Woodfield TB; Miot S; Martin I; van Blitterswijk CA; Riesle J Biomaterials; 2006 Mar; 27(7):1043-53. PubMed ID: 16125219 [TBL] [Abstract][Full Text] [Related]
8. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Cho JH; Kim SH; Park KD; Jung MC; Yang WI; Han SW; Noh JY; Lee JW Biomaterials; 2004 Nov; 25(26):5743-51. PubMed ID: 15147820 [TBL] [Abstract][Full Text] [Related]
9. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Dang JM; Sun DD; Shin-Ya Y; Sieber AN; Kostuik JP; Leong KW Biomaterials; 2006 Jan; 27(3):406-18. PubMed ID: 16115680 [TBL] [Abstract][Full Text] [Related]
10. Selective inhibition of type X collagen expression in human mesenchymal stem cell differentiation on polymer substrates surface-modified by glow discharge plasma. Nelea V; Luo L; Demers CN; Antoniou J; Petit A; Lerouge S; R Wertheimer M; Mwale F J Biomed Mater Res A; 2005 Oct; 75(1):216-23. PubMed ID: 16044417 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Yamane S; Iwasaki N; Majima T; Funakoshi T; Masuko T; Harada K; Minami A; Monde K; Nishimura S Biomaterials; 2005 Feb; 26(6):611-9. PubMed ID: 15282139 [TBL] [Abstract][Full Text] [Related]
12. Chondrocytes from patients with osteoarthritis express typical extracellular matrix molecules once grown onto a three-dimensional hyaluronan-based scaffold. Cavallo C; Desando G; Facchini A; Grigolo B J Biomed Mater Res A; 2010 Apr; 93(1):86-95. PubMed ID: 19484766 [TBL] [Abstract][Full Text] [Related]
13. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Kang SW; Yoo SP; Kim BS Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169 [TBL] [Abstract][Full Text] [Related]
15. Regaining chondrocyte phenotype in thermosensitive gel culture. An YH; Webb D; Gutowska A; Mironov VA; Friedman RJ Anat Rec; 2001 Aug; 263(4):336-41. PubMed ID: 11500809 [TBL] [Abstract][Full Text] [Related]
16. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. Rice MA; Anseth KS J Biomed Mater Res A; 2004 Sep; 70(4):560-8. PubMed ID: 15307160 [TBL] [Abstract][Full Text] [Related]
17. Photo-iniferter-based thermoresponsive block copolymers composed of poly(ethylene glycol) and poly(N-isopropylacrylamide) and chondrocyte immobilization. Kwon IK; Matsuda T Biomaterials; 2006 Mar; 27(7):986-95. PubMed ID: 16115679 [TBL] [Abstract][Full Text] [Related]
18. Effects of a biodegradable polymer synthesized with inorganic tin on the chondrogenesis of human articular chondrocytes. Banu N; Tsuchiya T; Sawada R J Biomed Mater Res A; 2006 Apr; 77(1):84-9. PubMed ID: 16355412 [TBL] [Abstract][Full Text] [Related]
19. Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering. Mercier NR; Costantino HR; Tracy MA; Bonassar LJ Biomaterials; 2005 May; 26(14):1945-52. PubMed ID: 15576168 [TBL] [Abstract][Full Text] [Related]
20. Avocado/soybean unsaponifiables prevent the inhibitory effect of osteoarthritic subchondral osteoblasts on aggrecan and type II collagen synthesis by chondrocytes. Henrotin YE; Deberg MA; Crielaard JM; Piccardi N; Msika P; Sanchez C J Rheumatol; 2006 Aug; 33(8):1668-78. PubMed ID: 16832844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]