BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 14624524)

  • 61. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA
    Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications.
    Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Charbord P; Delorme B; Reis RL; Neves NM
    Biomacromolecules; 2009 Aug; 10(8):2067-73. PubMed ID: 19621927
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.
    Zhu A; Zhao F; Ma T
    Acta Biomater; 2009 Jul; 5(6):2033-44. PubMed ID: 19299215
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Surface modification of PHBV scaffolds via UV polymerization to improve hydrophilicity.
    Ke Y; Wang Y; Ren L
    J Biomater Sci Polym Ed; 2010; 21(12):1589-602. PubMed ID: 20537243
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Conjugation of fibronectin onto three-dimensional porous scaffolds for vascular tissue engineering applications.
    Dubey G; Mequanint K
    Acta Biomater; 2011 Mar; 7(3):1114-25. PubMed ID: 21073985
    [TBL] [Abstract][Full Text] [Related]  

  • 67. RGD peptide-immobilized electrospun matrix of polyurethane for enhanced endothelial cell affinity.
    Choi WS; Bae JW; Lim HR; Joung YK; Park JC; Kwon IK; Park KD
    Biomed Mater; 2008 Dec; 3(4):044104. PubMed ID: 19029617
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Adsorption property and mechanism of composite adsorbent PMAA/SiO2 for aniline.
    An F; Feng X; Gao B
    J Hazard Mater; 2010 Jun; 178(1-3):499-504. PubMed ID: 20303662
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Functionalization of the surface of electrospun poly(epsilon-caprolactone) mats using zwitterionic poly(carboxybetaine methacrylate) and cell-specific peptide for endothelial progenitor cells capture.
    Li Q; Wang Z; Zhang S; Zheng W; Zhao Q; Zhang J; Wang L; Wang S; Kong D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1646-53. PubMed ID: 23827619
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A facile approach to modify polyurethane surfaces for biomaterial applications.
    Wu Z; Chen H; Huang H; Zhao T; Liu X; Li D; Yu Q
    Macromol Biosci; 2009 Dec; 9(12):1165-8. PubMed ID: 19821452
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Endothelialization of microporous YIGSR/PEG-modified polyurethaneurea.
    Jun HW; West JL
    Tissue Eng; 2005; 11(7-8):1133-40. PubMed ID: 16144449
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantitative grafting of peptide onto the nontoxic biodegradable waterborne polyurethanes to fabricate peptide modified scaffold for soft tissue engineering.
    Jiang X; Wang K; Ding M; Li J; Tan H; Wang Z; Fu Q
    J Mater Sci Mater Med; 2011 Apr; 22(4):819-27. PubMed ID: 21360121
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications.
    Theron JP; Knoetze JH; Sanderson RD; Hunter R; Mequanint K; Franz T; Zilla P; Bezuidenhout D
    Acta Biomater; 2010 Jul; 6(7):2434-47. PubMed ID: 20080215
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anticoagulant polyurethane substrates modified with poly(2-methacryloyloxyethyl phosphorylcholine) via SI-RATRP.
    Chi C; Sun B; Zhou N; Zhang M; Chu X; Yuan P; Shen J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():301-308. PubMed ID: 29329075
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.
    Ganji Y; Kasra M; Salahshour Kordestani S; Bagheri Hariri M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():341-9. PubMed ID: 25063127
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Blood compatibility of polyurethane immobilized with acrylic acid and plasma grafting sulfonic acid.
    Lv Q; Cao C; Zhu H
    J Mater Sci Mater Med; 2004 May; 15(5):607-11. PubMed ID: 15386969
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells.
    Boffito M; Di Meglio F; Mozetic P; Giannitelli SM; Carmagnola I; Castaldo C; Nurzynska D; Sacco AM; Miraglia R; Montagnani S; Vitale N; Brancaccio M; Tarone G; Basoli F; Rainer A; Trombetta M; Ciardelli G; Chiono V
    PLoS One; 2018; 13(7):e0199896. PubMed ID: 29979710
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Endothelial cell functions in vitro cultured on poly(L-lactic acid) membranes modified with different methods.
    Zhu Y; Gao C; Liu Y; Shen J
    J Biomed Mater Res A; 2004 Jun; 69(3):436-43. PubMed ID: 15127390
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preparation of poly(acrylic acid) modified polyurethane membrane for biomaterial by UV radiation without degassing.
    Yang JM; Huang MJ; Yeh TS
    J Biomed Mater Res; 1999 May; 45(2):133-9. PubMed ID: 10397967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.