These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
852 related articles for article (PubMed ID: 14624530)
1. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate. Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740 [TBL] [Abstract][Full Text] [Related]
3. Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. Sugino A; Miyazaki T; Kawachi G; Kikuta K; Ohtsuki C J Mater Sci Mater Med; 2008 Mar; 19(3):1399-405. PubMed ID: 17914619 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of osteoconductive organic inorganic nanohybrids through modification of chitin with alkoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Ashizuka M J Biomater Appl; 2007 Jul; 22(1):71-81. PubMed ID: 17065165 [TBL] [Abstract][Full Text] [Related]
5. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate. Liu J; Shirosaki Y; Miyazaki T J Biomater Appl; 2015 Apr; 29(9):1296-303. PubMed ID: 25568169 [TBL] [Abstract][Full Text] [Related]
6. In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. Sugino A; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):213-28. PubMed ID: 18632771 [TBL] [Abstract][Full Text] [Related]
7. Mechanical and histological evaluation of a PMMA-based bone cement modified with gamma-methacryloxypropyltrimethoxysilane and calcium acetate. Tsukeoka T; Suzuki M; Ohtsuki C; Sugino A; Tsuneizumi Y; Miyagi J; Kuramoto K; Moriya H Biomaterials; 2006 Jul; 27(21):3897-903. PubMed ID: 16563499 [TBL] [Abstract][Full Text] [Related]
8. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone. Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of bioactive HEMA-MPS-CaCl2 hybrid gels: effects of catalysts in the sol-gel processing on mechanical properties and in vitro hydroxyapatite formation in a simulated body fluid. Uchino T; Ohtsuki C; Kamitakahara M; Miyazaki T; Hayakawa S; Osaka A J Biomater Appl; 2009 May; 23(6):519-32. PubMed ID: 18757494 [TBL] [Abstract][Full Text] [Related]
10. Development of bioactive PMMA-based cement by modification with alkoxysilane and calcium salt. Ohtsuki C; Miyazaki T; Kyomoto M; Tanihara M; Osaka A J Mater Sci Mater Med; 2001; 12(10-12):895-9. PubMed ID: 15348336 [TBL] [Abstract][Full Text] [Related]
11. Preparation of bioactive and antibacterial PMMA-based bone cement by modification with quaternary ammonium and alkoxysilane. Wang H; Maeda T; Miyazaki T J Biomater Appl; 2021 Aug; 36(2):311-320. PubMed ID: 33757363 [TBL] [Abstract][Full Text] [Related]
12. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder. Mousa WF; Kobayashi M; Kitamura Y; Zeineldin IA; Nakamura T J Biomed Mater Res; 1999 Dec; 47(3):336-44. PubMed ID: 10487884 [TBL] [Abstract][Full Text] [Related]
13. Bone bonding ability of bioactive bone cements. Tamura J; Kitsugi T; Iida H; Fujita H; Nakamura T; Kokubo T; Yoshihara S Clin Orthop Relat Res; 1997 Oct; (343):183-91. PubMed ID: 9345224 [TBL] [Abstract][Full Text] [Related]
14. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Boesel LF; Cachinho SC; Fernandes MH; Reis RL Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of bioactive organic-inorganic nanohybrid for bone repair through sol-gel processing. Miyazaki T; Ohtsuki C; Tanihara M J Nanosci Nanotechnol; 2003 Dec; 3(6):511-5. PubMed ID: 15002131 [TBL] [Abstract][Full Text] [Related]
16. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications. Gbureck U; GrĂ¼bel S; Thull R; Barralet JE Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Ca3SiO5/CaCl2 composite cement for dental application. Wang X; Sun H; Chang J Dent Mater; 2008 Jan; 24(1):74-82. PubMed ID: 17391748 [TBL] [Abstract][Full Text] [Related]
18. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
19. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Lopez-Heredia MA; Sa Y; Salmon P; de Wijn JR; Wolke JG; Jansen JA Acta Biomater; 2012 Aug; 8(8):3120-7. PubMed ID: 22588072 [TBL] [Abstract][Full Text] [Related]
20. A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. Hosoya K; Ohtsuki C; Kawai T; Kamitakahara M; Ogata S; Miyazaki T; Tanihara M J Biomed Mater Res A; 2004 Dec; 71(4):596-601. PubMed ID: 15503300 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]