BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 14624541)

  • 41. Single-crystalline GdB6 nanowire field emitters.
    Zhang H; Zhang Q; Zhao G; Tang J; Zhou O; Qin LC
    J Am Chem Soc; 2005 Sep; 127(38):13120-1. PubMed ID: 16173720
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tunable synthesis of indium oxide octahedra, nanowires and tubular nanoarrow structures under oxidizing and reducing ambients.
    Kumar M; Singh VN; Mehta BR; Singh JP
    Nanotechnology; 2009 Jun; 20(23):235608. PubMed ID: 19451686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method.
    Li J; Zhao D; Meng X; Zhang Z; Zhang J; Shen D; Lu Y; Fan X
    J Phys Chem B; 2006 Aug; 110(30):14685-7. PubMed ID: 16869573
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J; Jiang Y; Meng X; Lee CS; Lee ST
    Small; 2005 Apr; 1(4):429-38. PubMed ID: 17193468
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures.
    Xu F; Xie Y; Zhang X; Zhang S; Liu X; Tian X
    Inorg Chem; 2004 Jan; 43(2):822-9. PubMed ID: 14731047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomic structures of multi-walled boron nitride nanohorns.
    Nishiwaki A; Oku T
    J Electron Microsc (Tokyo); 2005; 54 Suppl 1():i9-14. PubMed ID: 16157650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aluminum borate nanowires from the pyrolysis of polyaminoborane precursors.
    Du VA; Jurca T; Whittell GR; Manners I
    Dalton Trans; 2016 Jan; 45(3):1055-62. PubMed ID: 26649782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Green synthesis of nanowire-like Pt nanostructures and their catalytic properties.
    Yang W; Yang C; Sun M; Yang F; Ma Y; Zhang Z; Yang X
    Talanta; 2009 Apr; 78(2):557-64. PubMed ID: 19203624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-step chemical vapor growth of Ge/SiC(x)N(y) nanocables.
    Mathur S; Shen H; Donia N; Rügamer T; Sivakov V; Werner U
    J Am Chem Soc; 2007 Aug; 129(31):9746-52. PubMed ID: 17629271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An efficient templating approach for synthesis of highly uniform CdTe and PbTe nanowires.
    Liang HW; Liu S; Wu QS; Yu SH
    Inorg Chem; 2009 Jun; 48(11):4927-33. PubMed ID: 19374372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors.
    Wang G; Wang Q; Lu W; Li J
    J Phys Chem B; 2006 Nov; 110(43):22029-34. PubMed ID: 17064173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution.
    Peng K; Fang H; Hu J; Wu Y; Zhu J; Yan Y; Lee S
    Chemistry; 2006 Oct; 12(30):7942-7. PubMed ID: 16871502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chiral heteronanotubes: arrangement-dominated chiral interface states and conductivities.
    Xu X; Wei Y; Liu B; Li W; Zhang G; Jiang Y; Tian WQ; Liu L
    Nanoscale; 2019 May; 11(18):8699-8705. PubMed ID: 31012894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alumina-sheathed nanocables with cores consisting of various structures and materials.
    Han F; Meng G; Xu Q; Zhu X; Zhao X; Chen B; Li X; Yang D; Chu Z; Kong M
    Angew Chem Int Ed Engl; 2011 Feb; 50(9):2036-40. PubMed ID: 21344546
    [No Abstract]   [Full Text] [Related]  

  • 56. Electronic structure of insulating zirconium nitride.
    Prieto P; Galán L; Sanz JM
    Phys Rev B Condens Matter; 1993 Jan; 47(3):1613-1615. PubMed ID: 10006179
    [No Abstract]   [Full Text] [Related]  

  • 57. Scaling behavior of the magnetization of insulating Si:P.
    Sarachik MP; Roy A; Turner M; Levy M; He D; Isaacs LL; Bhatt RN
    Phys Rev B Condens Matter; 1986 Jul; 34(1):387-390. PubMed ID: 9939273
    [No Abstract]   [Full Text] [Related]  

  • 58. Insulating tubular BN sheathing on semiconducting nanowires.
    Zhu YC; Bando Y; Xue DF; Xu FF; Golberg D
    J Am Chem Soc; 2003 Nov; 125(47):14226-7. PubMed ID: 14624541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. True nanocable assemblies with insulating BN nanotube sheaths and conducting Cu nanowire cores.
    Zhou Z; Zhao J; Chen Z; Gao X; Lu JP; von Ragué Schleyer P; Yang CK
    J Phys Chem B; 2006 Feb; 110(6):2529-32. PubMed ID: 16471851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals.
    Zhu YC; Bando Y; Yin LW; Golberg D
    Chemistry; 2004 Aug; 10(15):3667-72. PubMed ID: 15281150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.