These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 14624606)
1. Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation. Vaiana AC; Neuweiler H; Schulz A; Wolfrum J; Sauer M; Smith JC J Am Chem Soc; 2003 Nov; 125(47):14564-72. PubMed ID: 14624606 [TBL] [Abstract][Full Text] [Related]
2. A close look at fluorescence quenching of organic dyes by tryptophan. Doose S; Neuweiler H; Sauer M Chemphyschem; 2005 Nov; 6(11):2277-85. PubMed ID: 16224752 [TBL] [Abstract][Full Text] [Related]
3. Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. Marmé N; Knemeyer JP; Sauer M; Wolfrum J Bioconjug Chem; 2003; 14(6):1133-9. PubMed ID: 14624626 [TBL] [Abstract][Full Text] [Related]
4. Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level. Neuweiler H; Schulz A; Böhmer M; Enderlein J; Sauer M J Am Chem Soc; 2003 May; 125(18):5324-30. PubMed ID: 12720444 [TBL] [Abstract][Full Text] [Related]
5. Spectroscopic investigations to reveal the nature of interactions between the haem protein myoglobin and the dye rhodamine 6G. Mandal P; Bardhan M; Ganguly T Luminescence; 2012; 27(4):285-91. PubMed ID: 21882172 [TBL] [Abstract][Full Text] [Related]
6. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
7. A detailed spectroscopic study on the interaction of Rhodamine 6G with human hemoglobin. Mandal P; Bardhan M; Ganguly T J Photochem Photobiol B; 2010 May; 99(2):78-86. PubMed ID: 20346694 [TBL] [Abstract][Full Text] [Related]
8. Structural heterogeneity in the collision complex between organic dyes and tryptophan in aqueous solution. Sun Q; Lu R; Yu A J Phys Chem B; 2012 Jan; 116(1):660-6. PubMed ID: 22148288 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence quenching induced by conformational fluctuations in unsolvated polypeptides. Shi X; Duft D; Parks JH J Phys Chem B; 2008 Oct; 112(40):12801-15. PubMed ID: 18793007 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence quenching of Rhodamine B base by two amines. Bakkialakshmi S; Selvarani P; Chenthamarai S Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():557-62. PubMed ID: 23353689 [TBL] [Abstract][Full Text] [Related]
11. Probing ligand binding to thromboxane synthase. Chao WC; Lu JF; Wang JS; Yang HC; Pan TA; Chou SC; Wang LH; Chou PT Biochemistry; 2013 Feb; 52(6):1113-21. PubMed ID: 23327333 [TBL] [Abstract][Full Text] [Related]
13. Study on the Interaction between Rhodamine Dyes and Allura Red Based on Fluorescence Spectra and Its Analytical Application in Soft Drinks. Sun Q; Yang L; Yang J; Liu S; Hu X Anal Sci; 2017; 33(10):1181-1187. PubMed ID: 28993594 [TBL] [Abstract][Full Text] [Related]
14. Shedding light on biomolecule conformational dynamics using fluorescence measurements of trapped ions. Iavarone AT; Duft D; Parks JH J Phys Chem A; 2006 Nov; 110(47):12714-27. PubMed ID: 17125284 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of the binding of QSY 21 and Rhodamine 6G fluorescence probes to DNA: structure and dynamics. Kabelác M; Zimandl F; Fessl T; Chval Z; Lankas F Phys Chem Chem Phys; 2010 Sep; 12(33):9677-84. PubMed ID: 20535407 [TBL] [Abstract][Full Text] [Related]
16. Structural effects of biologically relevant rhodamines on spectroscopy of fluorescence fluctuations. Ferreira JA Ann N Y Acad Sci; 2008; 1130():85-90. PubMed ID: 18596336 [TBL] [Abstract][Full Text] [Related]