BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14624639)

  • 1. A quantitative analysis and chemical approach for the reduction of nonspecific binding proteins on affinity resins.
    Tamura T; Terada T; Tanaka A
    Bioconjug Chem; 2003; 14(6):1222-30. PubMed ID: 14624639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and synthesis of novel hydrophilic spacers for the reduction of nonspecific binding proteins on affinity resins.
    Shiyama T; Furuya M; Yamazaki A; Terada T; Tanaka A
    Bioorg Med Chem; 2004 Jun; 12(11):2831-41. PubMed ID: 15142543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile method of identifying specific binding proteins on affinity resins.
    Yamamoto K; Yamazaki A; Takeuchi M; Tanaka A
    Anal Biochem; 2006 May; 352(1):15-23. PubMed ID: 16540075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of monolithic solid material by utilization of spacer for identification of the target using affinity resins.
    Iwaoka E; Mori T; Shimizu T; Hosoya K; Tanaka A
    Bioorg Med Chem Lett; 2009 Mar; 19(5):1469-72. PubMed ID: 19201607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of chemically stable solid phases for the target isolation with reduced nonspecific binding proteins.
    Takahashi T; Shiyama T; Hosoya K; Tanaka A
    Bioorg Med Chem Lett; 2006 Jan; 16(2):447-50. PubMed ID: 16290149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the specific binding proteins of bioactive small compound using affinity resins.
    Tanaka A
    Methods Mol Biol; 2009; 577():181-95. PubMed ID: 19718517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolating the whole complex of target proteins of FK506 using affinity resins from novel solid phases.
    Takahashi T; Shiyama T; Mori T; Hosoya K; Tanaka A
    Anal Bioanal Chem; 2006 May; 385(1):122-7. PubMed ID: 16601955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying linear interaction energy method for binding affinity calculations of podophyllotoxin analogues with tubulin using continuum solvent model and prediction of cytotoxic activity.
    Alam MA; Naik PK
    J Mol Graph Model; 2009; 27(8):930-43. PubMed ID: 19286405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of surface properties of affinity resin for capturing a target protein, cyclooxygenase-1.
    Mori T; Kubo T; Kaya K; Hosoya K
    Bioorg Med Chem; 2009 Feb; 17(4):1587-99. PubMed ID: 19167894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.
    Kursula P; Kursula I; Massimi M; Song YH; Downer J; Stanley WA; Witke W; Wilmanns M
    J Mol Biol; 2008 Jan; 375(1):270-90. PubMed ID: 18001770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interaction of tubulin with G-actin].
    VerkhovskiÄ­ AB; Surgucheva IG; Gel'fand VI; Rozenblat VA
    Dokl Akad Nauk SSSR; 1982; 263(2):488-90. PubMed ID: 7075456
    [No Abstract]   [Full Text] [Related]  

  • 12. Selective elution of target protein from affinity resins by a simple reductant with a thiol group.
    Mabuchi M; Haramura M; Shimizu T; Nishizaki T; Tanaka A
    Bioorg Med Chem Lett; 2010 Dec; 20(24):7361-4. PubMed ID: 21067925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classical ligands interact with native and recombinant tubulin from Onchocerca volvulus with similar rank order of magnitude.
    Wampande EM; Richard McIntosh J; Lubega GW
    Protein Expr Purif; 2007 Oct; 55(2):236-45. PubMed ID: 17662615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel tertiary amine oxide surfaces that resist nonspecific protein adsorption.
    Dilly SJ; Beecham MP; Brown SP; Griffin JM; Clark AJ; Griffin CD; Marshall J; Napier RM; Taylor PC; Marsh A
    Langmuir; 2006 Sep; 22(19):8144-50. PubMed ID: 16952254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and synthesis of affinity ligands and relation of their structure with adsorption of proteins.
    Ye L; Xu A; Cheng C; Zhang L; Huo C; Huang F; Xu H; Li R
    J Sep Sci; 2011 Nov; 34(22):3145-50. PubMed ID: 22015803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An easy preparation of 'monolithic type' hydrophilic solid phase: capability for affinity resin to isolate target proteins.
    Mori T; Takahashi T; Shiyama T; Tanaka A; Hira N; Tanaka N; Hosoya K
    Bioorg Med Chem; 2006 Aug; 14(16):5549-54. PubMed ID: 16682207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin.
    Knox AJ; Price T; Pawlak M; Golfis G; Flood CT; Fayne D; Williams DC; Meegan MJ; Lloyd DG
    J Med Chem; 2009 Apr; 52(8):2177-80. PubMed ID: 19331414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies.
    Zamolo L; Busini V; Moiani D; Moscatelli D; Cavallotti C
    Biotechnol Prog; 2008; 24(3):527-39. PubMed ID: 18452341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An immuno-chemo-proteomics method for drug target deconvolution.
    Saxena C; Zhen E; Higgs RE; Hale JE
    J Proteome Res; 2008 Aug; 7(8):3490-7. PubMed ID: 18590316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of ligand based models for protein domains to predict novel molecular targets and applications to triage affinity chromatography data.
    Bender A; Mikhailov D; Glick M; Scheiber J; Davies JW; Cleaver S; Marshall S; Tallarico JA; Harrington E; Cornella-Taracido I; Jenkins JL
    J Proteome Res; 2009 May; 8(5):2575-85. PubMed ID: 19271732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.