BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 14624639)

  • 21. -NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings.
    Das L; Datta AB; Gupta S; Poddar A; Sengupta S; Janik ME; Bhattacharyya B
    Biochemistry; 2005 Mar; 44(9):3249-58. PubMed ID: 15736935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site.
    Edler MC; Buey RM; Gussio R; Marcus AI; Vanderwal CD; Sorensen EJ; Díaz JF; Giannakakou P; Hamel E
    Biochemistry; 2005 Aug; 44(34):11525-38. PubMed ID: 16114889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for the regulation of tubulin by vinblastine.
    Gigant B; Wang C; Ravelli RB; Roussi F; Steinmetz MO; Curmi PA; Sobel A; Knossow M
    Nature; 2005 May; 435(7041):519-22. PubMed ID: 15917812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of affinity chromatography using a bioactive peptide as a ligand.
    Furuya M; Tsushima Y; Tani S; Kamimura T
    Bioorg Med Chem; 2006 Aug; 14(15):5093-8. PubMed ID: 16650997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of proteins binding the native tubulin dimer.
    Gache V; Louwagie M; Garin J; Caudron N; Lafanechere L; Valiron O
    Biochem Biophys Res Commun; 2005 Feb; 327(1):35-42. PubMed ID: 15629426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of actin as quercetin-binding protein: an approach to identify target molecules for specific ligands.
    Böhl M; Czupalla C; Tokalov SV; Hoflack B; Gutzeit HO
    Anal Biochem; 2005 Nov; 346(2):295-9. PubMed ID: 16213457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures.
    Annis DA; Nazef N; Chuang CC; Scott MP; Nash HM
    J Am Chem Soc; 2004 Dec; 126(47):15495-503. PubMed ID: 15563178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models.
    Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM
    Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of magnetic beads for rapid and efficient metal-chelate affinity purifications.
    Ji Z; Pinon DI; Miller LJ
    Anal Biochem; 1996 Sep; 240(2):197-201. PubMed ID: 8811907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of solid material for affinity resins by application of long PEG spacers to capture the whole target complex of FK506.
    Mabuchi M; Shimizu T; Ueda M; Mitamura K; Ikegawa S; Tanaka A
    Bioorg Med Chem Lett; 2015 Jul; 25(14):2788-92. PubMed ID: 26025877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of a novel affinity adsorbent for the capture and purification of recombinant factor VIII compounds.
    McCue JT; Selvitelli K; Walker J
    J Chromatogr A; 2009 Nov; 1216(45):7824-30. PubMed ID: 19800068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography.
    Nettles JH; Li H; Cornett B; Krahn JM; Snyder JP; Downing KH
    Science; 2004 Aug; 305(5685):866-9. PubMed ID: 15297674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of flaky affinity resin with co-continuous structure.
    Mori T; Tanaka A; Kubo T; Kaya K; Sakamoto M; Hosoya K
    Bioorg Med Chem; 2008 Feb; 16(4):1983-91. PubMed ID: 18037297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.
    Nguyen TL; McGrath C; Hermone AR; Burnett JC; Zaharevitz DW; Day BW; Wipf P; Hamel E; Gussio R
    J Med Chem; 2005 Sep; 48(19):6107-16. PubMed ID: 16162011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ligand-receptor interactions in tethered polymer layers.
    Longo G; Szleifer I
    Langmuir; 2005 Nov; 21(24):11342-51. PubMed ID: 16285809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical proteomics for drug discovery based on compound-immobilized affinity chromatography.
    Katayama H; Oda Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):21-7. PubMed ID: 17241823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.
    Zhou JL; An JJ; Li P; Li HJ; Jiang Y; Cheng JF
    J Chromatogr A; 2009 Mar; 1216(12):2394-403. PubMed ID: 19203758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and chemical basis for enhanced affinity and potency for a large series of estrogen receptor ligands: 2D and 3D QSAR studies.
    Salum Lde B; Polikarpov I; Andricopulo AD
    J Mol Graph Model; 2007 Sep; 26(2):434-42. PubMed ID: 17349808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass spectrometric measurement of differential reactivity of cysteine to localize protein-ligand binding sites. Application to tubulin-binding drugs.
    Kim YJ; Pannell LK; Sackett DL
    Anal Biochem; 2004 Sep; 332(2):376-83. PubMed ID: 15325307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.