BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 14625390)

  • 1. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans.
    Lesa GM; Palfreyman M; Hall DH; Clandinin MT; Rudolph C; Jorgensen EM; Schiavo G
    J Cell Sci; 2003 Dec; 116(Pt 24):4965-75. PubMed ID: 14625390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants.
    Watts JL; Phillips E; Griffing KR; Browse J
    Genetics; 2003 Feb; 163(2):581-9. PubMed ID: 12618397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyunsaturated fatty acids and neurotransmission in Caenorhabditis elegans.
    Marza E; Lesa GM
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):77-80. PubMed ID: 16417487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyunsaturated fatty acids influence synaptojanin localization to regulate synaptic vesicle recycling.
    Marza E; Long T; Saiardi A; Sumakovic M; Eimer S; Hall DH; Lesa GM
    Mol Biol Cell; 2008 Mar; 19(3):833-42. PubMed ID: 18094048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Juniperonic Acid Biosynthesis is Essential in
    Guha S; Calarco S; Gachet MS; Gertsch J
    Cells; 2020 Sep; 9(9):. PubMed ID: 32961767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol.
    Lee HC; Inoue T; Imae R; Kono N; Shirae S; Matsuda S; Gengyo-Ando K; Mitani S; Arai H
    Mol Biol Cell; 2008 Mar; 19(3):1174-84. PubMed ID: 18094042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gamma-linolenic and stearidonic acids are required for basal immunity in Caenorhabditis elegans through their effects on p38 MAP kinase activity.
    Nandakumar M; Tan MW
    PLoS Genet; 2008 Nov; 4(11):e1000273. PubMed ID: 19023415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene transfer of the Caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis.
    Ge Y; Wang X; Chen Z; Landman N; Lo EH; Kang JX
    J Neurochem; 2002 Sep; 82(6):1360-6. PubMed ID: 12354283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene and protein expression profiling of the fat-1 mouse brain.
    Ménesi D; Kitajka K; Molnár E; Kis Z; Belleger J; Narce M; Kang JX; Puskás LG; Das UN
    Prostaglandins Leukot Essent Fatty Acids; 2009 Jan; 80(1):33-42. PubMed ID: 19138887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label-free imaging.
    Chen WW; Yi YH; Chien CH; Hsiung KC; Ma TH; Lin YC; Lo SJ; Chang TC
    Sci Rep; 2016 Aug; 6():32021. PubMed ID: 27535493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.
    Zhang Y; Wang H; Zhang J; Hu Y; Zhang L; Wu X; Su X; Li T; Zou X; Liang B
    Biochim Biophys Acta; 2016 Apr; 1861(4):310-9. PubMed ID: 26806391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans.
    Watts JL; Browse J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5854-9. PubMed ID: 11972048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of adenoviral gene transfer of C. elegans n-3 fatty acid desaturase on the lipid profile and growth of human breast cancer cells.
    Ge Y; Chen Z; Kang ZB; Cluette-Brown J; Laposata M; Kang JX
    Anticancer Res; 2002; 22(2A):537-43. PubMed ID: 12014621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tomosyn inhibits synaptic vesicle priming in Caenorhabditis elegans.
    Gracheva EO; Burdina AO; Holgado AM; Berthelot-Grosjean M; Ackley BD; Hadwiger G; Nonet ML; Weimer RM; Richmond JE
    PLoS Biol; 2006 Jul; 4(8):e261. PubMed ID: 16895441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mu2 adaptin facilitates but is not essential for synaptic vesicle recycling in Caenorhabditis elegans.
    Gu M; Schuske K; Watanabe S; Liu Q; Baum P; Garriga G; Jorgensen EM
    J Cell Biol; 2008 Dec; 183(5):881-92. PubMed ID: 19047463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative lipid analysis and life span of the fat-3 mutant of Caenorhabditis elegans.
    Hillyard SL; German JB
    J Agric Food Chem; 2009 Apr; 57(8):3389-96. PubMed ID: 19301819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans.
    Lee HC; Kubo T; Kono N; Kage-Nakadai E; Gengyo-Ando K; Mitani S; Inoue T; Arai H
    Genes Cells; 2012 Sep; 17(9):748-57. PubMed ID: 22862955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes.
    Serrano-Saiz E; Vogt MC; Levy S; Wang Y; Kaczmarczyk KK; Mei X; Bai G; Singson A; Grant BD; Hobert O
    Genetics; 2020 Jan; 214(1):163-178. PubMed ID: 31776169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction.
    Francis MM; Evans SP; Jensen M; Madsen DM; Mancuso J; Norman KR; Maricq AV
    Neuron; 2005 May; 46(4):581-94. PubMed ID: 15944127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles.
    Nonet ML; Holgado AM; Brewer F; Serpe CJ; Norbeck BA; Holleran J; Wei L; Hartwieg E; Jorgensen EM; Alfonso A
    Mol Biol Cell; 1999 Jul; 10(7):2343-60. PubMed ID: 10397769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.