BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 14625391)

  • 1. The vimentin cytoskeleton regulates focal contact size and adhesion of endothelial cells subjected to shear stress.
    Tsuruta D; Jones JC
    J Cell Sci; 2003 Dec; 116(Pt 24):4977-84. PubMed ID: 14625391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfilament-dependent movement of the beta3 integrin subunit within focal contacts of endothelial cells.
    Tsuruta D; Gonzales M; Hopkinson SB; Otey C; Khuon S; Goldman RD; Jones JC
    FASEB J; 2002 Jun; 16(8):866-8. PubMed ID: 11967230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior.
    Ballestrem C; Hinz B; Imhof BA; Wehrle-Haller B
    J Cell Biol; 2001 Dec; 155(7):1319-32. PubMed ID: 11756480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelial adherence under shear stress is dependent upon microfilament reorganization.
    Wechezak AR; Wight TN; Viggers RF; Sauvage LR
    J Cell Physiol; 1989 Apr; 139(1):136-46. PubMed ID: 2708451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts.
    Bershadsky AD; Tint IS; Svitkina TM
    Cell Motil Cytoskeleton; 1987; 8(3):274-83. PubMed ID: 3121191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of vimentin to the cell surface by beta3 integrin and plectin mediates adhesion strength.
    Bhattacharya R; Gonzalez AM; Debiase PJ; Trejo HE; Goldman RD; Flitney FW; Jones JC
    J Cell Sci; 2009 May; 122(Pt 9):1390-400. PubMed ID: 19366731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Focal contacts and the cytoskeleton].
    Tint IS; Neĭfakh AA; Bershadskiĭ AD
    Tsitologiia; 1987 Jul; 29(7):739-48. PubMed ID: 3314051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of the intermediate filament-associated protein plectin at focal contacts and actin stress fibers.
    Seifert GJ; Lawson D; Wiche G
    Eur J Cell Biol; 1992 Oct; 59(1):138-47. PubMed ID: 1468436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential role of Src suppressed C kinase substrates in endothelial cell adhesion and spreading.
    Cheng C; Liu H; Ge H; Qian J; Qin J; Sun L; Shen A
    Biochem Biophys Res Commun; 2007 Jun; 358(1):342-8. PubMed ID: 17482576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha(v)beta3-integrin-dependent activation of focal adhesion kinase mediates NF-kappaB activation and motogenic activity by HIV-1 Tat in endothelial cells.
    Urbinati C; Bugatti A; Giacca M; Schlaepfer D; Presta M; Rusnati M
    J Cell Sci; 2005 Sep; 118(Pt 17):3949-58. PubMed ID: 16105876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intermediate filament protein vimentin binds specifically to a recombinant integrin alpha2/beta1 cytoplasmic tail complex and co-localizes with native alpha2/beta1 in endothelial cell focal adhesions.
    Kreis S; Schönfeld HJ; Melchior C; Steiner B; Kieffer N
    Exp Cell Res; 2005 Apr; 305(1):110-21. PubMed ID: 15777792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vimentin function in lymphocyte adhesion and transcellular migration.
    Nieminen M; Henttinen T; Merinen M; Marttila-Ichihara F; Eriksson JE; Jalkanen S
    Nat Cell Biol; 2006 Feb; 8(2):156-62. PubMed ID: 16429129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate filaments and their organization in human corneal endothelium.
    Risen LA; Binder PS; Nayak SK
    Invest Ophthalmol Vis Sci; 1987 Dec; 28(12):1933-8. PubMed ID: 3316108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifications of vimentin filament architecture and vimentin-nuclear interactions by cholesterol oxides in 73/73 endothelial cells.
    Palladini G; Finardi G; Bellomo G
    Exp Cell Res; 1996 Feb; 223(1):83-90. PubMed ID: 8635498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow and high affinity binding affect the elastic modulus of the nucleus, cell body and the stress fibers of endothelial cells.
    Mathur AB; Reichert WM; Truskey GA
    Ann Biomed Eng; 2007 Jul; 35(7):1120-30. PubMed ID: 17385045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focal adhesions as mechanosensors: the two-spring model.
    Schwarz US; Erdmann T; Bischofs IB
    Biosystems; 2006; 83(2-3):225-32. PubMed ID: 16236431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of coupled transient changes of Rac, Rho, adhesions and stress fibers alignment in endothelial cells responding to shear stress.
    Civelekoglu-Scholey G; Orr AW; Novak I; Meister JJ; Schwartz MA; Mogilner A
    J Theor Biol; 2005 Feb; 232(4):569-85. PubMed ID: 15588637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes.
    McCue S; Noria S; Langille BL
    Trends Cardiovasc Med; 2004 May; 14(4):143-51. PubMed ID: 15177265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of integrin-mediated cell adhesion strengthening.
    Gallant ND; García AJ
    J Biomech; 2007; 40(6):1301-9. PubMed ID: 16828104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ILK is required for the assembly of matrix-forming adhesions and capillary morphogenesis in endothelial cells.
    Vouret-Craviari V; Boulter E; Grall D; Matthews C; Van Obberghen-Schilling E
    J Cell Sci; 2004 Sep; 117(Pt 19):4559-69. PubMed ID: 15316070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.