These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 14625551)

  • 41. Human LINE retrotransposons generate processed pseudogenes.
    Esnault C; Maestre J; Heidmann T
    Nat Genet; 2000 Apr; 24(4):363-7. PubMed ID: 10742098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human retroelements may introduce intragenic polyadenylation signals.
    Roy-Engel AM; El-Sawy M; Farooq L; Odom GL; Perepelitsa-Belancio V; Bruch H; Oyeniran OO; Deininger PL
    Cytogenet Genome Res; 2005; 110(1-4):365-71. PubMed ID: 16093688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spliced integrated retrotransposed element (SpIRE) formation in the human genome.
    Larson PA; Moldovan JB; Jasti N; Kidd JM; Beck CR; Moran JV
    PLoS Biol; 2018 Mar; 16(3):e2003067. PubMed ID: 29505568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. LINE drive. retrotransposition and genome instability.
    Kazazian HH; Goodier JL
    Cell; 2002 Aug; 110(3):277-80. PubMed ID: 12176313
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A mouse model of human L1 retrotransposition.
    Ostertag EM; DeBerardinis RJ; Goodier JL; Zhang Y; Yang N; Gerton GL; Kazazian HH
    Nat Genet; 2002 Dec; 32(4):655-60. PubMed ID: 12415270
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An actively retrotransposing, novel subfamily of mouse L1 elements.
    Naas TP; DeBerardinis RJ; Moran JV; Ostertag EM; Kingsmore SF; Seldin MF; Hayashizaki Y; Martin SL; Kazazian HH
    EMBO J; 1998 Jan; 17(2):590-7. PubMed ID: 9430649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins.
    Simon R; Richter JD
    Mol Cell Biol; 1994 Dec; 14(12):7867-75. PubMed ID: 7969126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. L1 Mosaicism in Mammals: Extent, Effects, and Evolution.
    Faulkner GJ; Garcia-Perez JL
    Trends Genet; 2017 Nov; 33(11):802-816. PubMed ID: 28797643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial constraints on polyadenylation signal function.
    Heath CV; Denome RM; Cole CN
    J Biol Chem; 1990 Jun; 265(16):9098-104. PubMed ID: 2160955
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses.
    Schek N; Cooke C; Alwine JC
    Mol Cell Biol; 1992 Dec; 12(12):5386-93. PubMed ID: 1333042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants.
    Irniger S; Sanfaçon H; Egli CM; Braus GH
    Mol Cell Biol; 1992 May; 12(5):2322-30. PubMed ID: 1373813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA recognition by the human polyadenylation factor CstF.
    Takagaki Y; Manley JL
    Mol Cell Biol; 1997 Jul; 17(7):3907-14. PubMed ID: 9199325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Flow of the Gibbon LAVA Element Is Facilitated by the LINE-1 Retrotransposition Machinery.
    Meyer TJ; Held U; Nevonen KA; Klawitter S; Pirzer T; Carbone L; Schumann GG
    Genome Biol Evol; 2016 Oct; 8(10):3209-3225. PubMed ID: 27635049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Contemporary retrotransposition of a novel non-coding gene induces exon-skipping in dystrophin mRNA.
    Awano H; Malueka RG; Yagi M; Okizuka Y; Takeshima Y; Matsuo M
    J Hum Genet; 2010 Dec; 55(12):785-90. PubMed ID: 20827276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element.
    Simon R; Tassan JP; Richter JD
    Genes Dev; 1992 Dec; 6(12B):2580-91. PubMed ID: 1285126
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomic deletions created upon LINE-1 retrotransposition.
    Gilbert N; Lutz-Prigge S; Moran JV
    Cell; 2002 Aug; 110(3):315-25. PubMed ID: 12176319
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition.
    Moldovan JB; Moran JV
    PLoS Genet; 2015 May; 11(5):e1005121. PubMed ID: 25951186
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons.
    Maxwell PH; Belote JM; Levis RW
    Nucleic Acids Res; 2006; 34(19):5498-507. PubMed ID: 17020919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Truncated ORF1 proteins can suppress LINE-1 retrotransposition in trans.
    Sokolowski M; Chynces M; deHaro D; Christian CM; Belancio VP
    Nucleic Acids Res; 2017 May; 45(9):5294-5308. PubMed ID: 28431148
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta.
    Goodchild NL; Wilkinson DA; Mager DL
    Gene; 1992 Nov; 121(2):287-94. PubMed ID: 1446826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.