These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 14627663)

  • 21. Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study.
    Senot P; Baillet S; Renault B; Berthoz A
    J Cogn Neurosci; 2008 Oct; 20(10):1827-38. PubMed ID: 18370604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity.
    Papaxanthis C; Pozzo T; McIntyre J
    Neuroscience; 2005; 135(2):371-83. PubMed ID: 16125854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intercepting real and path-guided apparent motion targets.
    Port NL; Pellizzer G; Georgopoulos AP
    Exp Brain Res; 1996 Jul; 110(2):298-307. PubMed ID: 8836693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of task constraints on the organization of interception movements.
    Fayt V; Bootsma RJ; Marteniuk RG; Mackenzie CL; Laurent M
    J Sports Sci; 1997 Dec; 15(6):581-6. PubMed ID: 9486435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of colour changes in a moving object.
    Kreegipuu K; Murd C; Allik J
    Vision Res; 2006 May; 46(11):1848-55. PubMed ID: 16387343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A quantitative synchronization model for smooth pursuit target tracking.
    Voss HU; McCandliss BD; Ghajar J; Suh M;
    Biol Cybern; 2007 Mar; 96(3):309-22. PubMed ID: 17082951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of motion coherence manipulations on the synchronization level of a perception-action task.
    Ceux T; Wagemans J; Rosas P; Montagne G; Buekers M
    Behav Brain Res; 2005 Jul; 162(1):83-9. PubMed ID: 15922068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intercepting real and simulated falling objects: what is the difference?
    Baurès R; Benguigui N; Amorim MA; Hecht H
    J Neurosci Methods; 2009 Oct; 184(1):48-53. PubMed ID: 19632274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of visual motion on interceptive actions and perception.
    Marinovic W; Plooy AM; Arnold DH
    Vision Res; 2012 May; 60():73-8. PubMed ID: 22480880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifactorial interactions involved in linear self-transport distance estimate: a place for time.
    Israël I; Capelli A; Sablé D; Laurent C; Lecoq C; Bredin J
    Int J Psychophysiol; 2004 Jun; 53(1):21-8. PubMed ID: 15172132
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Precocity of fine motor control and task context: hitting a ball while stepping.
    Rosey F; Golomer EM; Keller J
    J Mot Behav; 2008 Jul; 40(4):347-57. PubMed ID: 18628111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.
    Kimmig H; Ohlendorf S; Speck O; Sprenger A; Rutschmann RM; Haller S; Greenlee MW
    Neuropsychologia; 2008; 46(8):2203-13. PubMed ID: 18394660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of task-constraints on the planning and control of interceptive hitting movements.
    Caljouw SR; van der Kamp J; Savelsbergh GJ
    Neurosci Lett; 2006 Jan; 392(1-2):84-9. PubMed ID: 16229948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indirect interception actions by blind and visually impaired perceivers: echolocation for interceptive actions.
    Vernat JP; Gordon MS
    Scand J Psychol; 2010 Feb; 51(1):75-83. PubMed ID: 19392947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dynamical neural network for hitting an approaching object.
    Dessing JC; Caljouw SR; Peper PE; Beek PJ
    Biol Cybern; 2004 Dec; 91(6):377-87. PubMed ID: 15599591
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Getting hold of approaching objects: in search of a common control of hand-closure initiation in catching and grasping.
    van de Kamp C; Bongers RM; Zaal FT
    Hum Mov Sci; 2010 Aug; 29(4):518-28. PubMed ID: 20627433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of a moving target versus a temporal constraint on reach and grasp in patients with Parkinson's disease.
    Majsak MJ; Kaminski T; Gentile AM; Gordon AM
    Exp Neurol; 2008 Apr; 210(2):479-88. PubMed ID: 18237731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optical acceleration cancellation: a viable interception strategy?
    Rozendaal LA; van Soest AJ
    Biol Cybern; 2003 Dec; 89(6):415-25. PubMed ID: 14673653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.