These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 14627668)
21. The Tyrer-Cuzick Model Inaccurately Predicts Invasive Breast Cancer Risk in Women With LCIS. Valero MG; Zabor EC; Park A; Gilbert E; Newman A; King TA; Pilewskie ML Ann Surg Oncol; 2020 Mar; 27(3):736-740. PubMed ID: 31559544 [TBL] [Abstract][Full Text] [Related]
22. Performance of the Gail and Tyrer-Cuzick breast cancer risk assessment models in women screened in a primary care setting with the FHS-7 questionnaire. Vianna FSL; Giacomazzi J; Oliveira Netto CB; Nunes LN; Caleffi M; Ashton-Prolla P; Camey SA Genet Mol Biol; 2019; 42(1 suppl 1):232-237. PubMed ID: 31170278 [TBL] [Abstract][Full Text] [Related]
24. [Models for risk assessment and prediction in breast cancer]. Hu Z; Li X; Feng MH; Chu JJ; Xie W Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Oct; 30(10):1073-7. PubMed ID: 20193393 [TBL] [Abstract][Full Text] [Related]
25. Estimated breast cancer risk and screening outcomes among premenopausal women with non-cyclic mastalgia. Rogulski L; Bińczyk J Ginekol Pol; 2013 Sep; 84(9):754-7. PubMed ID: 24191512 [TBL] [Abstract][Full Text] [Related]
26. An alternative approach to selecting patients for high-risk screening with breast MRI. Hollingsworth AB; Stough RG Breast J; 2014; 20(2):192-7. PubMed ID: 24387050 [TBL] [Abstract][Full Text] [Related]
27. A risk management model for familial breast cancer: A new application using Fuzzy Cognitive Map method. Papageorgiou EI; Jayashree Subramanian ; Karmegam A; Papandrianos N Comput Methods Programs Biomed; 2015 Nov; 122(2):123-35. PubMed ID: 26220142 [TBL] [Abstract][Full Text] [Related]
28. Limitations of the Gail model in the specialized breast cancer risk assessment clinic. Euhus DM; Leitch AM; Huth JF; Peters GN Breast J; 2002; 8(1):23-7. PubMed ID: 11856157 [TBL] [Abstract][Full Text] [Related]
29. Breast cancer risk assessment in patients who test negative for a hereditary cancer syndrome. Breit C; Ablah E; Ward M; Okut H; Tenofsky PL Am J Surg; 2020 Mar; 219(3):430-433. PubMed ID: 31635794 [TBL] [Abstract][Full Text] [Related]
30. Understanding mathematical models for breast cancer risk assessment and counseling. Euhus DM Breast J; 2001; 7(4):224-32. PubMed ID: 11678799 [TBL] [Abstract][Full Text] [Related]
31. Distribution of Estimated Lifetime Breast Cancer Risk Among Women Undergoing Screening Mammography. Niell BL; Augusto B; McIntyre M; Conley CC; Gerke T; Roetzheim R; Garcia J; Vadaparampil ST AJR Am J Roentgenol; 2021 Jul; 217(1):48-55. PubMed ID: 33978450 [No Abstract] [Full Text] [Related]
32. Breast cancer risk assessment across the risk continuum: genetic and nongenetic risk factors contributing to differential model performance. Quante AS; Whittemore AS; Shriver T; Strauch K; Terry MB Breast Cancer Res; 2012 Nov; 14(6):R144. PubMed ID: 23127309 [TBL] [Abstract][Full Text] [Related]
33. Breast cancer risk prediction using Tyrer-Cuzick algorithm with an 18-SNPs polygenic risk score in a European population with below-average breast cancer incidence. Oblak T; Škerl P; Narang BJ; Blagus R; Krajc M; Novaković S; Žgajnar J Breast; 2023 Dec; 72():103590. PubMed ID: 37857130 [TBL] [Abstract][Full Text] [Related]
34. Assessing the Value of Incorporating a Polygenic Risk Score with Nongenetic Factors for Predicting Breast Cancer Diagnosis in the UK Biobank. Collister JA; Liu X; Littlejohns TJ; Cuzick J; Clifton L; Hunter DJ Cancer Epidemiol Biomarkers Prev; 2024 Jun; 33(6):812-820. PubMed ID: 38630597 [TBL] [Abstract][Full Text] [Related]
35. Predicting breast cancer risk in a racially diverse, community-based sample of potentially high-risk women. Meadows RJ; Figueroa W; Shane-Carson KP; Padamsee TJ Cancer Med; 2022 Nov; 11(21):4043-4052. PubMed ID: 35388639 [TBL] [Abstract][Full Text] [Related]
36. Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening. Hoskins KF; Zwaagstra A; Ranz M Cancer; 2006 Oct; 107(8):1769-76. PubMed ID: 16967460 [TBL] [Abstract][Full Text] [Related]
37. Predicting risk of breast cancer in postmenopausal women by hormone receptor status. Chlebowski RT; Anderson GL; Lane DS; Aragaki AK; Rohan T; Yasmeen S; Sarto G; Rosenberg CA; Hubbell FA; J Natl Cancer Inst; 2007 Nov; 99(22):1695-705. PubMed ID: 18000216 [TBL] [Abstract][Full Text] [Related]
38. The Value of Tyrer-Cuzick Versus Gail Risk Modeling in Predicting Benefit from Screening MRI in Breast Cancer. Sevdalis A; Deng X; Bandyopadhyay D; McGuire KP Eur J Breast Health; 2022 Jan; 18(1):79-84. PubMed ID: 35059595 [TBL] [Abstract][Full Text] [Related]
39. Epidemiological models for breast cancer risk estimation. Lech R; Przemysław O Ginekol Pol; 2011 Jun; 82(6):451-4. PubMed ID: 21853936 [TBL] [Abstract][Full Text] [Related]
40. Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. Rockhill B; Spiegelman D; Byrne C; Hunter DJ; Colditz GA J Natl Cancer Inst; 2001 Mar; 93(5):358-66. PubMed ID: 11238697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]