BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 14627808)

  • 21. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis.
    Kochhar S; Paulus H
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1635-9. PubMed ID: 8757727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria.
    Miranda-Ríos J; Navarro M; Soberón M
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9736-41. PubMed ID: 11470904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural insights into amino acid binding and gene control by a lysine riboswitch.
    Serganov A; Huang L; Patel DJ
    Nature; 2008 Oct; 455(7217):1263-7. PubMed ID: 18784651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for widespread gene control function by the ydaO riboswitch candidate.
    Block KF; Hammond MC; Breaker RR
    J Bacteriol; 2010 Aug; 192(15):3983-9. PubMed ID: 20511502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.
    Rodionov DA; Dubchak IL; Arkin AP; Alm EJ; Gelfand MS
    PLoS Comput Biol; 2005 Oct; 1(5):e55. PubMed ID: 16261196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
    Sherwood AV; Henkin TM
    Annu Rev Microbiol; 2016 Sep; 70():361-74. PubMed ID: 27607554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria.
    Mironov AS; Gusarov I; Rafikov R; Lopez LE; Shatalin K; Kreneva RA; Perumov DA; Nudler E
    Cell; 2002 Nov; 111(5):747-56. PubMed ID: 12464185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional and translational S-box riboswitches differ in ligand-binding properties.
    Bhagdikar D; Grundy FJ; Henkin TM
    J Biol Chem; 2020 May; 295(20):6849-6860. PubMed ID: 32209653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity.
    Schilling O; Langbein I; Müller M; Schmalisch MH; Stülke J
    Nucleic Acids Res; 2004; 32(9):2853-64. PubMed ID: 15155854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria.
    Rodionov DA; Dubchak I; Arkin A; Alm E; Gelfand MS
    Genome Biol; 2004; 5(11):R90. PubMed ID: 15535866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes.
    Mironov AA; Koonin EV; Roytberg MA; Gelfand MS
    Nucleic Acids Res; 1999 Jul; 27(14):2981-9. PubMed ID: 10390542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of genes for small non-coding RNAs that belong to the regulon of the two-component regulatory system CiaRH in Streptococcus.
    Marx P; Nuhn M; Kovács M; Hakenbeck R; Brückner R
    BMC Genomics; 2010 Nov; 11():661. PubMed ID: 21106082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis.
    Boumezbeur AH; Bruer M; Stoecklin G; Mack M
    Metab Eng; 2020 Sep; 61():58-68. PubMed ID: 32413407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression.
    Winkler W; Nahvi A; Breaker RR
    Nature; 2002 Oct; 419(6910):952-6. PubMed ID: 12410317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression.
    Lee ER; Blount KF; Breaker RR
    RNA Biol; 2009; 6(2):187-94. PubMed ID: 19246992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria.
    Panina EM; Vitreschak AG; Mironov AA; Gelfand MS
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):529-43. PubMed ID: 11545272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of transcriptional regulation of histidine metabolism in Gram-positive bacteria.
    Ashniev GA; Sernova NV; Shevkoplias AE; Rodionov ID; Rodionova IA; Vitreschak AG; Gelfand MS; Rodionov DA
    BMC Genomics; 2022 Aug; 23(Suppl 6):558. PubMed ID: 36008760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria.
    Gutierrez-Preciado A; Jensen RA; Yanofsky C; Merino E
    Trends Genet; 2005 Aug; 21(8):432-6. PubMed ID: 15953653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
    Price IR; Gaballa A; Ding F; Helmann JD; Ke A
    Mol Cell; 2015 Mar; 57(6):1110-1123. PubMed ID: 25794619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and antimicrobial action of purine analogues that bind Guanine riboswitches.
    Kim JN; Blount KF; Puskarz I; Lim J; Link KH; Breaker RR
    ACS Chem Biol; 2009 Nov; 4(11):915-27. PubMed ID: 19739679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.