These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 14627814)

  • 1. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure.
    Correll CC; Beneken J; Plantinga MJ; Lubbers M; Chan YL
    Nucleic Acids Res; 2003 Dec; 31(23):6806-18. PubMed ID: 14627814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phenotype of mutations of the base-pair C2658.G2663 that closes the tetraloop in the sarcin/ricin domain of Escherichia coli 23 S ribosomal RNA.
    Chan YL; Sitikov AS; Wool IG
    J Mol Biol; 2000 May; 298(5):795-805. PubMed ID: 10801349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis.
    Shi X; Khade PK; Sanbonmatsu KY; Joseph S
    J Mol Biol; 2012 Jun; 419(3-4):125-38. PubMed ID: 22459262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common and distinctive features of GNRA tetraloops based on a GUAA tetraloop structure at 1.4 A resolution.
    Correll CC; Swinger K
    RNA; 2003 Mar; 9(3):355-63. PubMed ID: 12592009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational studies on the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    Eur J Biochem; 1994 Nov; 226(1):141-7. PubMed ID: 7957241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution.
    Correll CC; Wool IG; Munishkin A
    J Mol Biol; 1999 Sep; 292(2):275-87. PubMed ID: 10493875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The action of pokeweed antiviral protein and ricin A-chain on mutants in the alpha-sarcin loop of Escherichia coli 23S ribosomal RNA.
    Marchant A; Hartley MR
    J Mol Biol; 1995 Dec; 254(5):848-55. PubMed ID: 7500355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(2):567-80. PubMed ID: 9878430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the ribosomal RNA domain essential for binding elongation factors.
    Correll CC; Munishkin A; Chan YL; Ren Z; Wool IG; Steitz TA
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13436-41. PubMed ID: 9811818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of 23S ribosomal RNA structure and function in Escherichia coli.
    Triman KL
    Adv Genet; 1999; 41():157-95. PubMed ID: 10494619
    [No Abstract]   [Full Text] [Related]  

  • 12. Molecular dynamics simulations of sarcin-ricin rRNA motif.
    Spacková N; Sponer J
    Nucleic Acids Res; 2006; 34(2):697-708. PubMed ID: 16456030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phenotype of mutations of G2655 in the sarcin/ricin domain of 23 S ribosomal RNA.
    Macbeth MR; Wool IG
    J Mol Biol; 1999 Jan; 285(3):965-75. PubMed ID: 9918717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling RNA tertiary structure motifs by graph-grammars.
    St-Onge K; Thibault P; Hamel S; Major F
    Nucleic Acids Res; 2007; 35(5):1726-36. PubMed ID: 17317683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and stability of variants of the sarcin-ricin loop of 28S rRNA: NMR studies of the prokaryotic SRL and a functional mutant.
    Seggerson K; Moore PB
    RNA; 1998 Oct; 4(10):1203-15. PubMed ID: 9769095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui.
    Matadeen R; Sergiev P; Leonov A; Pape T; van der Sluis E; Mueller F; Osswald M; von Knoblauch K; Brimacombe R; Bogdanov A; van Heel M; Dontsova O
    J Mol Biol; 2001 Apr; 307(5):1341-9. PubMed ID: 11292346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs.
    Leontis NB; Westhof E
    J Mol Biol; 1998 Oct; 283(3):571-83. PubMed ID: 9784367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA.
    Sergiev PV; Bogdanov AA; Dahlberg AE; Dontsova O
    J Mol Biol; 2000 Jun; 299(2):379-89. PubMed ID: 10860746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in the conserved P loop perturb the conformation of two structural elements in the peptidyl transferase center of 23 S ribosomal RNA.
    Gregory ST; Dahlberg AE
    J Mol Biol; 1999 Jan; 285(4):1475-83. PubMed ID: 9917390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linkage between substrate recognition and catalysis during cleavage of sarcin/ricin loop RNA by restrictocin.
    Korennykh AV; Plantinga MJ; Correll CC; Piccirilli JA
    Biochemistry; 2007 Nov; 46(44):12744-56. PubMed ID: 17929942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.