These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 14628856)

  • 1. Neurobehavioural deficits following postnatal iron overload: I spontaneous motor activity.
    Fredriksson A; Schröder N; Archer T
    Neurotox Res; 2003; 5(1-2):53-76. PubMed ID: 14628856
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional consequences of iron overload in catecholaminergic interactions: the Youdim factor.
    Archer T; Fredriksson A
    Neurochem Res; 2007 Oct; 32(10):1625-39. PubMed ID: 17694434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurobehavioural deficits following postnatal iron overload: II Instrumental learning performance.
    Archer T; Schröder N; Fredriksson A
    Neurotox Res; 2003; 5(1-2):77-94. PubMed ID: 14628858
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of postnatal iron administration on MPTP-induced behavioral deficits and neurotoxicity: behavioral enhancement by L-Dopa-MK-801 co-administration.
    Fredriksson A; Archer T
    Behav Brain Res; 2003 Feb; 139(1-2):31-46. PubMed ID: 12642174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoradiographic analysis of N-methyl-D-aspartate receptor binding in monkey brain: effects of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine and levodopa treatment.
    He L; Di Monte DA; Langston JW; Quik M
    Neuroscience; 2000; 99(4):697-704. PubMed ID: 10974432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal iron overload destroys NA-DA functional interactions.
    Fredriksson A; Archer T
    J Neural Transm (Vienna); 2007 Feb; 114(2):195-203. PubMed ID: 16932993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dyskinesia and wearing-off following dopamine D1 agonist treatment in drug-naive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates.
    Blanchet PJ; Grondin R; Bédard PJ
    Mov Disord; 1996 Jan; 11(1):91-4. PubMed ID: 8771074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of D1 and D2 dopamine receptor agonist and antagonist on parkinsonism in chronic MPTP-treated monkeys.
    Nomoto M; Fukuda T
    Adv Neurol; 1993; 60():119-22. PubMed ID: 8093574
    [No Abstract]   [Full Text] [Related]  

  • 9. A simple quantitative bradykinesia test in MPTP-treated mice.
    Ogawa N; Hirose Y; Ohara S; Ono T; Watanabe Y
    Res Commun Chem Pathol Pharmacol; 1985 Dec; 50(3):435-41. PubMed ID: 3878557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of selective D1 and D2 agonists in inducing dyskinesia in drug-naive MPTP monkeys.
    Bédard PJ; Gomez-Mancilla B; Blanchette P; Gagnon C; Falardeau P; DiPaolo T
    Adv Neurol; 1993; 60():113-8. PubMed ID: 8093573
    [No Abstract]   [Full Text] [Related]  

  • 11. Estradiol and dehydroepiandrosterone potentiate levodopa-induced locomotor activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys.
    Bélanger N; Grégoire L; Bédard P; Di Paolo T
    Endocrine; 2003 Jun; 21(1):97-101. PubMed ID: 12777709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral and biochemical effects of 4-phenylpyridine, 2-phenylpyridine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in rodents.
    Hassan MN; Thakar JH; Grimes JD
    Adv Neurol; 1990; 53():219-23. PubMed ID: 2239461
    [No Abstract]   [Full Text] [Related]  

  • 13. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice.
    Mori A; Ohashi S; Nakai M; Moriizumi T; Mitsumoto Y
    Neurosci Res; 2005 Mar; 51(3):265-74. PubMed ID: 15710490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in pallidal neuronal responses to peripheral sensory and striatal stimulation in symptomatic and recovered parkinsonian cats.
    Rothblat DS; Schneider JS
    Brain Res; 1995 Dec; 705(1-2):1-14. PubMed ID: 8821727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracerebroventricular infusion of (+)-4-propyl-9-hydroxy-naphthoxacine in monkeys with MPTP-induced akinesia.
    de Yébenes JG; Fahn S; Goodman R; Jamrosik Z; Pezzoli G; Popalski S
    Adv Neurol; 1990; 53():231-8. PubMed ID: 1978516
    [No Abstract]   [Full Text] [Related]  

  • 16. Dopamine D1 and D2 receptor interactions in the MPTP-treated marmoset.
    Elliott PJ; Walsh DM; Close SP
    Neurosci Lett; 1992 Aug; 142(1):1-4. PubMed ID: 1357609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.
    Andersen AH; Hardy PA; Forman E; Gerhardt GA; Gash DM; Grondin RC; Zhang Z
    Neurobiol Aging; 2015 Feb; 36(2):1174-82. PubMed ID: 25443764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine D3 receptors in the basal ganglia of the common marmoset and following MPTP and L-DOPA treatment.
    Hurley MJ; Jolkkonen J; Stubbs CM; Jenner P; Marsden CD
    Brain Res; 1996 Feb; 709(2):259-64. PubMed ID: 8833762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Operant behavioral disorders in monkeys with an MPTP-induced Parkinson-like syndrome].
    Burov IuV; Shul'govskiĭ VV; Petrov GV; Tereshchenko LV; Iudin AV
    Fiziol Zh Im I M Sechenova; 1995 Oct; 81(10):113-6. PubMed ID: 9026250
    [No Abstract]   [Full Text] [Related]  

  • 20. Deficits in behavioral initiation and execution processes in monkeys with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism.
    Schultz W; Studer A; Jonsson G; Sundström E; Mefford I
    Neurosci Lett; 1985 Aug; 59(2):225-32. PubMed ID: 3877257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.