BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 14629008)

  • 41.
    Miwa T; Taguchi H
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2304841120. PubMed ID: 37523569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes.
    Schulz A; Schumann W
    J Bacteriol; 1996 Feb; 178(4):1088-93. PubMed ID: 8576042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim.
    Barrow EW; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4643-9. PubMed ID: 15561838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli.
    Allen SP; Polazzi JO; Gierse JK; Easton AM
    J Bacteriol; 1992 Nov; 174(21):6938-47. PubMed ID: 1356969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro.
    Laskowska E; Kuczyńska-Wiśnik D; Skórko-Glonek J; Taylor A
    Mol Microbiol; 1996 Nov; 22(3):555-71. PubMed ID: 8939438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol.
    Tomoyasu T; Mogk A; Langen H; Goloubinoff P; Bukau B
    Mol Microbiol; 2001 Apr; 40(2):397-413. PubMed ID: 11309122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454).
    Sekiguchi J; Tharavichitkul P; Miyoshi-Akiyama T; Chupia V; Fujino T; Araake M; Irie A; Morita K; Kuratsuji T; Kirikae T
    Antimicrob Agents Chemother; 2005 Sep; 49(9):3948-51. PubMed ID: 16127079
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones.
    Yamaguchi Y; Tomoyasu T; Takaya A; Morioka M; Yamamoto T
    BMC Microbiol; 2003 Aug; 3():16. PubMed ID: 12911840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Role of Escherichia coli molecular chaperones in the protection of bacterial cells against irreversible aggregation induced by heat shock].
    Kedzierska S
    Postepy Biochem; 2005; 51(2):146-53. PubMed ID: 16209352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.
    Osipiuk J; Joachimiak A
    Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of chloramphenicol acetyltransferase in a coupled transcription-translation in vitro system lacking the chaperones DnaK and DnaJ.
    Vysokanov AV
    FEBS Lett; 1995 Nov; 375(3):211-4. PubMed ID: 7498501
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Escherichia coli defects caused by null mutations in dnaK and dnaJ genes.
    Paciorek J; Kardyś K; Lobacz B; Wolska KI
    Acta Microbiol Pol; 1997; 46(1):7-17. PubMed ID: 9271843
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction by psychotropic drugs and local anesthetics of DnaK and GroEL proteins in Escherichia coli.
    Tanji K; Mizushima T; Natori S; Sekimizu K
    Biochim Biophys Acta; 1992 Jan; 1129(2):172-6. PubMed ID: 1346093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis.
    Zuber U; Schumann W
    J Bacteriol; 1994 Mar; 176(5):1359-63. PubMed ID: 8113175
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The N-terminal domain of Escherichia coli ClpB enhances chaperone function.
    Chow IT; Barnett ME; Zolkiewski M; Baneyx F
    FEBS Lett; 2005 Aug; 579(20):4242-8. PubMed ID: 16051221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lysis of Escherichia coli by beta-lactams which bind penicillin-binding proteins 1a and 1b: inhibition by heat shock proteins.
    Powell JK; Young KD
    J Bacteriol; 1991 Jul; 173(13):4021-6. PubMed ID: 2061284
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Toward a semisynthetic stress response system to engineer microbial solvent tolerance.
    Zingaro KA; Papoutsakis ET
    mBio; 2012; 3(5):. PubMed ID: 23033472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.