BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14629017)

  • 21. Cloning and characterization of the Actinobacillus actinomycetemcomitans gene encoding a heat-shock protein 90 homologue.
    Winston JL; Toth SI; Roe BA; Dyer DW
    Gene; 1996 Nov; 179(2):199-204. PubMed ID: 8972900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment.
    Mason CA; Dünner J; Indra P; Colangelo T
    Appl Environ Microbiol; 1999 Aug; 65(8):3433-40. PubMed ID: 10427031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response.
    Parsot C; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9898-902. PubMed ID: 2124707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the Vibrio vulnificus htpG gene and its influence on cold shock recovery.
    Choi S; Jang KK; Choi S; Yun HJ; Kang DH
    J Microbiol; 2012 Aug; 50(4):707-11. PubMed ID: 22923124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Only one dnaK homolog, dnaK2, is active transcriptionally and is essential in Synechocystis.
    Varvasovszki V; Glatz A; Shigapova N; Jósvay K; Vígh L; Horváth I
    Biochem Biophys Res Commun; 2003 Jun; 305(3):641-8. PubMed ID: 12763042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted inactivation of the hrcA repressor gene in cyanobacteria.
    Nakamoto H; Suzuki M; Kojima K
    FEBS Lett; 2003 Aug; 549(1-3):57-62. PubMed ID: 12914925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel transcriptional regulator, Sll1130, negatively regulates heat-responsive genes in Synechocystis sp. PCC6803.
    Krishna PS; Rani BR; Mohan MK; Suzuki I; Shivaji S; Prakash JS
    Biochem J; 2013 Feb; 449(3):751-60. PubMed ID: 23088579
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a small heat shock protein, Mx Hsp16.6, of Myxococcus xanthus.
    Otani M; Ueki T; Kozuka S; Segawa M; Sano K; Inouye S
    J Bacteriol; 2005 Aug; 187(15):5236-41. PubMed ID: 16030217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constitutive expression of a small heat-shock protein confers cellular thermotolerance and thermal protection to the photosynthetic apparatus in cyanobacteria.
    Nakamoto H; Suzuki N; Roy SK
    FEBS Lett; 2000 Oct; 483(2-3):169-74. PubMed ID: 11042275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The isiB gene encoding flavodoxin is not essential for photoautotrophic iron limited growth of the cyanobacterium Synechocystis sp. strain PCC 6803.
    Kutzki C; Masepohl B; Böhme H
    FEMS Microbiol Lett; 1998 Mar; 160(2):231-5. PubMed ID: 9532742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stress responses of Synechocystis sp. strain PCC 6803 mutants impaired in genes encoding putative alternative sigma factors.
    Huckauf J; Nomura C; Forchhammer K; Hagemann M
    Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2877-2889. PubMed ID: 11065366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel heat shock protein plays an important role in thermal stress management in cyanobacteria.
    Nakamoto H; Tanaka N; Ishikawa N
    J Biol Chem; 2001 Jul; 276(27):25088-95. PubMed ID: 11342543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants.
    Clarke AK; Eriksson MJ
    Plant Mol Biol; 1996 Jul; 31(4):721-30. PubMed ID: 8806403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xanthomonas albilineans HtpG is required for biosynthesis of the antibiotic and phytotoxin albicidin.
    Vivien E; Megessier S; Pieretti I; Cociancich S; Frutos R; Gabriel DW; Rott PC; Royer M
    FEMS Microbiol Lett; 2005 Oct; 251(1):81-9. PubMed ID: 16102911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Construction and characterization of a Porphyromonas gingivalis htpG disruption mutant.
    Sweier DG; Combs A; Shelburne CE; Fenno JC; Lopatin DE
    FEMS Microbiol Lett; 2003 Aug; 225(1):101-6. PubMed ID: 12900027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving stress tolerance and cell integrity of Rhodococcus ruber by overexpressing small-shock-protein Hsp16 of Rhodococcus.
    Wang M; Chen J; Yu H; Shen Z
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):929-938. PubMed ID: 30066247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the Bacillus subtilis heat shock gene htpG is under positive control.
    Versteeg S; Escher A; Wende A; Wiegert T; Schumann W
    J Bacteriol; 2003 Jan; 185(2):466-74. PubMed ID: 12511492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of cell death by a novel 16.2 kD heat shock protein predominantly via Hsp90 mediated lipid rafts stabilization and Akt activation pathway.
    Bellyei S; Szigeti A; Boronkai A; Pozsgai E; Gomori E; Melegh B; Janaky T; Bognar Z; Hocsak E; Sumegi B; Gallyas F
    Apoptosis; 2007 Jan; 12(1):97-112. PubMed ID: 17136496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of null mutation of the heat-shock gene htpG on the production of virulence factors by Pseudomonas aeruginosa.
    Grudniak AM; Klecha B; Wolska KI
    Future Microbiol; 2018 Jan; 13():69-80. PubMed ID: 29199454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301.
    Borbély G; Surányi G; Korcz A; Pálfi Z
    J Bacteriol; 1985 Mar; 161(3):1125-30. PubMed ID: 3918983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.