These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 14629561)

  • 1. Co-localization analysis of complex formation among membrane proteins by computerized fluorescence microscopy: application to immunofluorescence co-patching studies.
    Lachmanovich E; Shvartsman DE; Malka Y; Botvin C; Henis YI; Weiss AM
    J Microsc; 2003 Nov; 212(Pt 2):122-31. PubMed ID: 14629561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis.
    Gilles JF; Dos Santos M; Boudier T; Bolte S; Heck N
    Methods; 2017 Feb; 115():55-64. PubMed ID: 27890650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images.
    Helmuth JA; Paul G; Sbalzarini IF
    BMC Bioinformatics; 2010 Jul; 11():372. PubMed ID: 20609242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy.
    Andronov L; Orlov I; Lutz Y; Vonesch JL; Klaholz BP
    Sci Rep; 2016 Apr; 6():24084. PubMed ID: 27068792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpotitPy: a semi-automated tool for object-based co-localization of fluorescent labels in microscopy images.
    Akalestou-Clocher A; Kalamara V; Topalis P; Garinis GA
    BMC Bioinformatics; 2022 Oct; 23(1):439. PubMed ID: 36271369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for automated characterization of cell populations in thick specimens from 3-D confocal fluorescence microscopy data.
    Roysam B; Ancin H; Bhattacharjya AK; Chisti MA; Seegal R; Turner JN
    J Microsc; 1994 Feb; 173(Pt 2):115-26. PubMed ID: 7909568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fluorescence microscopy and image deconvolution.
    Swedlow JR
    Methods Cell Biol; 2013; 114():407-26. PubMed ID: 23931516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An image analysis method to quantify CFTR subcellular localization.
    Pizzo L; Fariello MI; Lepanto P; Aguilar PS; Kierbel A
    Mol Cell Probes; 2014 Aug; 28(4):175-80. PubMed ID: 24561544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
    Held C; Palmisano R; Häberle L; Hensel M; Wittenberg T
    Cytometry A; 2011 Nov; 79(11):933-45. PubMed ID: 22002887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase diversity for three-dimensional imaging.
    Kner P
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1980-7. PubMed ID: 24322853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated neurite labeling and analysis in fluorescence microscopy images.
    Xiong G; Zhou X; Degterev A; Ji L; Wong ST
    Cytometry A; 2006 Jun; 69(6):494-505. PubMed ID: 16680708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to quantify co-localization in biological images.
    Shiwen Zhu ; Welsch RE; Matsudaira PT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3887-3890. PubMed ID: 28269135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative fluorescence co-localization to study protein-receptor complexes.
    Pompey SN; Michaely P; Luby-Phelps K
    Methods Mol Biol; 2013; 1008():439-53. PubMed ID: 23729262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background fluorescence estimation and vesicle segmentation in live cell imaging with conditional random fields.
    Pécot T; Bouthemy P; Boulanger J; Chessel A; Bardin S; Salamero J; Kervrann C
    IEEE Trans Image Process; 2015 Feb; 24(2):667-80. PubMed ID: 25531952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
    Baek J; Son YS; McLachlan GJ
    Bioinformatics; 2007 Feb; 23(4):458-65. PubMed ID: 17166856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.
    Paparelli L; Corthout N; Pavie B; Annaert W; Munck S
    Adv Anat Embryol Cell Biol; 2016; 219():95-122. PubMed ID: 27207364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semantic approach to segmentation of overlapping objects.
    Wittenberg T; Grobe M; Münzenmayer C; Kuziela H; Spinnler K
    Methods Inf Med; 2004; 43(4):343-53. PubMed ID: 15472745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric approach to segmentation and protein localization in cell culture assays.
    Raman S; Maxwell CA; Barcellos-Hoff MH; Parvin B
    J Microsc; 2007 Jan; 225(Pt 1):22-30. PubMed ID: 17286692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-detector number and brightness analysis reveals spatio-temporal oligomerization of proteins in living cells.
    Fukushima R; Yamamoto J; Ishikawa H; Kinjo M
    Methods; 2018 May; 140-141():161-171. PubMed ID: 29572069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed analysis of proteins in tissue using multispectral fluorescence imaging.
    Barash E; Dinn S; Sevinsky C; Ginty F
    IEEE Trans Med Imaging; 2010 Aug; 29(8):1457-62. PubMed ID: 20304722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.