These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 14629874)

  • 1. Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach.
    Christensen JK; Lamberth K; Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Buus S; Brunak S; Lund O
    Neural Comput; 2003 Dec; 15(12):2931-42. PubMed ID: 14629874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations.
    Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Lamberth K; Buus S; Brunak S; Lund O
    Protein Sci; 2003 May; 12(5):1007-17. PubMed ID: 12717023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the affinity of epitope-peptides with class I MHC molecule HLA-A*0201: an application of amino acid-based peptide prediction.
    Du QS; Wei YT; Pang ZW; Chou KC; Huang RB
    Protein Eng Des Sel; 2007 Sep; 20(9):417-23. PubMed ID: 17681974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two complementary methods for predicting peptides binding major histocompatibility complex molecules.
    Gulukota K; Sidney J; Sette A; DeLisi C
    J Mol Biol; 1997 Apr; 267(5):1258-67. PubMed ID: 9150410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structure-based approach for prediction of MHC-binding peptides.
    Altuvia Y; Margalit H
    Methods; 2004 Dec; 34(4):454-9. PubMed ID: 15542371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Bayesian neural network models of MHC class II peptide binding.
    Burden FR; Winkler DA
    J Mol Graph Model; 2005 Jun; 23(6):481-9. PubMed ID: 15878832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of MHC class II binders using the ant colony search strategy.
    Karpenko O; Shi J; Dai Y
    Artif Intell Med; 2005; 35(1-2):147-56. PubMed ID: 16061368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and biological evaluation of two chemically modified peptide epitopes for the class I MHC protein HLA-B*2705.
    Jones MA; Hislop AD; Snaith JS
    Org Biomol Chem; 2006 Oct; 4(20):3769-77. PubMed ID: 17024283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling major histocompatibility complex binding by nonparametric averaging of multiple predictors and sequence encodings.
    Huang JC; Jojic N
    J Immunol Methods; 2011 Nov; 374(1-2):35-42. PubMed ID: 20934429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.
    Hattotuwagama CK; Guan P; Doytchinova IA; Flower DR
    Org Biomol Chem; 2004 Nov; 2(22):3274-83. PubMed ID: 15534705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules.
    Gomez-Nunez M; Pinilla-Ibarz J; Dao T; May RJ; Pao M; Jaggi JS; Scheinberg DA
    Leuk Res; 2006 Oct; 30(10):1293-8. PubMed ID: 16533527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virus-epitope vaccine design: informatic matching the HLA-I polymorphism to the virus genome.
    Vider-Shalit T; Raffaeli S; Louzoun Y
    Mol Immunol; 2007 Feb; 44(6):1253-61. PubMed ID: 16930710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach.
    Buus S; Lauemøller SL; Worning P; Kesmir C; Frimurer T; Corbet S; Fomsgaard A; Hilden J; Holm A; Brunak S
    Tissue Antigens; 2003 Nov; 62(5):378-84. PubMed ID: 14617044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.