These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 14630950)

  • 41. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
    Zamir O; Charlton MP
    J Physiol; 2006 Feb; 571(Pt 1):83-99. PubMed ID: 16339182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium entry and transmitter release at voltage-clamped nerve terminals of squid.
    Augustine GJ; Charlton MP; Smith SJ
    J Physiol; 1985 Oct; 367():163-81. PubMed ID: 2865362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca2+ and K+ currents.
    Shapiro E; Castellucci VF; Kandel ER
    Proc Natl Acad Sci U S A; 1980 Jan; 77(1):629-33. PubMed ID: 6244571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Depletion of calcium in the synaptic cleft of a calyx-type synapse in the rat brainstem.
    Borst JG; Sakmann B
    J Physiol; 1999 Nov; 521 Pt 1(Pt 1):123-33. PubMed ID: 10562339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Presynaptic inhibition produced by an identified presynaptic inhibitory neuron. II. Presynaptic conductance changes caused by histamine.
    Kretz R; Shapiro E; Bailey CH; Chen M; Kandel ER
    J Neurophysiol; 1986 Jan; 55(1):131-46. PubMed ID: 2419525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization.
    Hori T; Takahashi T
    J Physiol; 2009 Jun; 587(Pt 12):2987-3000. PubMed ID: 19403620
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of Held: a comparison of two auditory nerve terminals.
    Lin KH; Oleskevich S; Taschenberger H
    J Physiol; 2011 Sep; 589(17):4301-20. PubMed ID: 21746778
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium entry into voltage-clamped presynaptic terminals of squid.
    Augustine GJ; Charlton MP; Smith SJ
    J Physiol; 1985 Oct; 367():143-62. PubMed ID: 2414438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of calcium-activated potassium channels in transmitter release at the squid giant synapse.
    Augustine GJ; Charlton MP; Horn R
    J Physiol; 1988 Apr; 398():149-64. PubMed ID: 2455797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcium levels measured in a presynaptic neurone of Aplysia under conditions that modulate transmitter release.
    Connor JA; Kretz R; Shapiro E
    J Physiol; 1986 Jun; 375():625-42. PubMed ID: 2432228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Divalent cations differentially support transmitter release at the squid giant synapse.
    Augustine GJ; Eckert R
    J Physiol; 1984 Jan; 346():257-71. PubMed ID: 6142104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse.
    Kochubey O; Lou X; Schneggenburger R
    Trends Neurosci; 2011 May; 34(5):237-46. PubMed ID: 21439657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Posttetanic potentiation critically depends on an enhanced Ca(2+) sensitivity of vesicle fusion mediated by presynaptic PKC.
    Korogod N; Lou X; Schneggenburger R
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15923-8. PubMed ID: 17884983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse.
    Schneggenburger R; Meyer AC; Neher E
    Neuron; 1999 Jun; 23(2):399-409. PubMed ID: 10399944
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse.
    LlinĂ¡s R; Gruner JA; Sugimori M; McGuinness TL; Greengard P
    J Physiol; 1991 May; 436():257-82. PubMed ID: 1676419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Presynaptic calcium dynamics and transmitter release evoked by single action potentials at mammalian central synapses.
    Sinha SR; Wu LG; Saggau P
    Biophys J; 1997 Feb; 72(2 Pt 1):637-51. PubMed ID: 9017193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium sensitivity of glutamate release in a calyx-type terminal.
    Bollmann JH; Sakmann B; Borst JG
    Science; 2000 Aug; 289(5481):953-7. PubMed ID: 10937999
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Similar intracellular Ca2+ requirements for inactivation and facilitation of voltage-gated Ca2+ channels in a glutamatergic mammalian nerve terminal.
    Lin KH; Erazo-Fischer E; Taschenberger H
    J Neurosci; 2012 Jan; 32(4):1261-72. PubMed ID: 22279211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse.
    Yang YM; Wang LY
    J Neurosci; 2006 May; 26(21):5698-708. PubMed ID: 16723526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.