BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14631067)

  • 1. SMoS: a database of structural motifs of protein superfamilies.
    Chakrabarti S; Venkatramanan K; Sowdhamini R
    Protein Eng; 2003 Nov; 16(11):791-3. PubMed ID: 14631067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MegaMotifBase: a database of structural motifs in protein families and superfamilies.
    Pugalenthi G; Suganthan PN; Sowdhamini R; Chakrabarti S
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D218-21. PubMed ID: 17933773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSToSS--sequence-structural templates of single-member superfamilies.
    Chakrabarti S; Manohari G; Pugalenthi G; Sowdhamini R
    In Silico Biol; 2006; 6(4):311-9. PubMed ID: 16922694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regions of minimal structural variation among members of protein domain superfamilies: application to remote homology detection and modelling using distant relationships.
    Chakrabarti S; Sowdhamini R
    FEBS Lett; 2004 Jul; 569(1-3):31-6. PubMed ID: 15225604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMotif: a server for structural motifs in proteins.
    Pugalenthi G; Suganthan PN; Sowdhamini R; Chakrabarti S
    Bioinformatics; 2007 Mar; 23(5):637-8. PubMed ID: 17237055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CATH hierarchy revisited-structural divergence in domain superfamilies and the continuity of fold space.
    Cuff A; Redfern OC; Greene L; Sillitoe I; Lewis T; Dibley M; Reid A; Pearl F; Dallman T; Todd A; Garratt R; Thornton J; Orengo C
    Structure; 2009 Aug; 17(8):1051-62. PubMed ID: 19679085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of conservation and substitutions of secondary structure elements within protein superfamilies.
    Mizuguchi K; Blundell T
    Bioinformatics; 2000 Dec; 16(12):1111-9. PubMed ID: 11159330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PASS2 version 6: a database of structure-based sequence alignments of protein domain superfamilies in accordance with SCOPe.
    Ghosh P; Bhattacharyya T; Mathew OK; Sowdhamini R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30820573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PASS2.7: a database containing structure-based sequence alignments and associated features of protein domain superfamilies from SCOPe.
    Bhattacharyya T; Nayak S; Goswami S; Gadiyaram V; Mathew OK; Sowdhamini R
    Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35411388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional restraints in the evolution of protein families and superfamilies.
    Gong S; Worth CL; Bickerton GR; Lee S; Tanramluk D; Blundell TL
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):727-33. PubMed ID: 19614584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies.
    May AC
    Protein Sci; 2002 Dec; 11(12):2825-35. PubMed ID: 12441381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ArchDB: automated protein loop classification as a tool for structural genomics.
    Espadaler J; Fernandez-Fuentes N; Hermoso A; Querol E; Aviles FX; Sternberg MJ; Oliva B
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D185-8. PubMed ID: 14681390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebelling for a reason: protein structural "outliers".
    Arumugam G; Nair AG; Hariharaputran S; Ramanathan S
    PLoS One; 2013; 8(9):e74416. PubMed ID: 24073209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.
    Regad L; Martin J; Camproux AC
    BMC Bioinformatics; 2011 Jun; 12():247. PubMed ID: 21689388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GenDiS: Genomic Distribution of protein structural domain Superfamilies.
    Pugalenthi G; Bhaduri A; Sowdhamini R
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D252-5. PubMed ID: 15608190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies.
    Cuff AL; Sillitoe I; Lewis T; Redfern OC; Garratt R; Thornton J; Orengo CA
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D310-4. PubMed ID: 18996897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CATH Dictionary of Homologous Superfamilies (DHS): a consensus approach for identifying distant structural homologues.
    Bray JE; Todd AE; Pearl FM; Thornton JM; Orengo CA
    Protein Eng; 2000 Mar; 13(3):153-65. PubMed ID: 10775657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.