These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 14631067)
1. SMoS: a database of structural motifs of protein superfamilies. Chakrabarti S; Venkatramanan K; Sowdhamini R Protein Eng; 2003 Nov; 16(11):791-3. PubMed ID: 14631067 [TBL] [Abstract][Full Text] [Related]
2. MegaMotifBase: a database of structural motifs in protein families and superfamilies. Pugalenthi G; Suganthan PN; Sowdhamini R; Chakrabarti S Nucleic Acids Res; 2008 Jan; 36(Database issue):D218-21. PubMed ID: 17933773 [TBL] [Abstract][Full Text] [Related]
3. SSToSS--sequence-structural templates of single-member superfamilies. Chakrabarti S; Manohari G; Pugalenthi G; Sowdhamini R In Silico Biol; 2006; 6(4):311-9. PubMed ID: 16922694 [TBL] [Abstract][Full Text] [Related]
4. Regions of minimal structural variation among members of protein domain superfamilies: application to remote homology detection and modelling using distant relationships. Chakrabarti S; Sowdhamini R FEBS Lett; 2004 Jul; 569(1-3):31-6. PubMed ID: 15225604 [TBL] [Abstract][Full Text] [Related]
5. SMotif: a server for structural motifs in proteins. Pugalenthi G; Suganthan PN; Sowdhamini R; Chakrabarti S Bioinformatics; 2007 Mar; 23(5):637-8. PubMed ID: 17237055 [TBL] [Abstract][Full Text] [Related]
6. Structural diversity of domain superfamilies in the CATH database. Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872 [TBL] [Abstract][Full Text] [Related]
7. PASS2: an automated database of protein alignments organised as structural superfamilies. Bhaduri A; Pugalenthi G; Sowdhamini R BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245 [TBL] [Abstract][Full Text] [Related]
8. The CATH hierarchy revisited-structural divergence in domain superfamilies and the continuity of fold space. Cuff A; Redfern OC; Greene L; Sillitoe I; Lewis T; Dibley M; Reid A; Pearl F; Dallman T; Todd A; Garratt R; Thornton J; Orengo C Structure; 2009 Aug; 17(8):1051-62. PubMed ID: 19679085 [TBL] [Abstract][Full Text] [Related]
9. Analysis of conservation and substitutions of secondary structure elements within protein superfamilies. Mizuguchi K; Blundell T Bioinformatics; 2000 Dec; 16(12):1111-9. PubMed ID: 11159330 [TBL] [Abstract][Full Text] [Related]
10. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information. Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755 [TBL] [Abstract][Full Text] [Related]
11. PASS2 version 6: a database of structure-based sequence alignments of protein domain superfamilies in accordance with SCOPe. Ghosh P; Bhattacharyya T; Mathew OK; Sowdhamini R Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30820573 [TBL] [Abstract][Full Text] [Related]
12. PASS2.7: a database containing structure-based sequence alignments and associated features of protein domain superfamilies from SCOPe. Bhattacharyya T; Nayak S; Goswami S; Gadiyaram V; Mathew OK; Sowdhamini R Database (Oxford); 2022 Apr; 2022():. PubMed ID: 35411388 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional restraints in the evolution of protein families and superfamilies. Gong S; Worth CL; Bickerton GR; Lee S; Tanramluk D; Blundell TL Biochem Soc Trans; 2009 Aug; 37(Pt 4):727-33. PubMed ID: 19614584 [TBL] [Abstract][Full Text] [Related]
14. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies. May AC Protein Sci; 2002 Dec; 11(12):2825-35. PubMed ID: 12441381 [TBL] [Abstract][Full Text] [Related]
15. ArchDB: automated protein loop classification as a tool for structural genomics. Espadaler J; Fernandez-Fuentes N; Hermoso A; Querol E; Aviles FX; Sternberg MJ; Oliva B Nucleic Acids Res; 2004 Jan; 32(Database issue):D185-8. PubMed ID: 14681390 [TBL] [Abstract][Full Text] [Related]
16. Rebelling for a reason: protein structural "outliers". Arumugam G; Nair AG; Hariharaputran S; Ramanathan S PLoS One; 2013; 8(9):e74416. PubMed ID: 24073209 [TBL] [Abstract][Full Text] [Related]
17. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs. Regad L; Martin J; Camproux AC BMC Bioinformatics; 2011 Jun; 12():247. PubMed ID: 21689388 [TBL] [Abstract][Full Text] [Related]
18. GenDiS: Genomic Distribution of protein structural domain Superfamilies. Pugalenthi G; Bhaduri A; Sowdhamini R Nucleic Acids Res; 2005 Jan; 33(Database issue):D252-5. PubMed ID: 15608190 [TBL] [Abstract][Full Text] [Related]
19. The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies. Cuff AL; Sillitoe I; Lewis T; Redfern OC; Garratt R; Thornton J; Orengo CA Nucleic Acids Res; 2009 Jan; 37(Database issue):D310-4. PubMed ID: 18996897 [TBL] [Abstract][Full Text] [Related]
20. The CATH Dictionary of Homologous Superfamilies (DHS): a consensus approach for identifying distant structural homologues. Bray JE; Todd AE; Pearl FM; Thornton JM; Orengo CA Protein Eng; 2000 Mar; 13(3):153-65. PubMed ID: 10775657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]