BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14631067)

  • 21. PASS2: a semi-automated database of protein alignments organised as structural superfamilies.
    Mallika V; Bhaduri A; Sowdhamini R
    Nucleic Acids Res; 2002 Jan; 30(1):284-8. PubMed ID: 11752316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iMOTdb--a comprehensive collection of spatially interacting motifs in proteins.
    Pugalenthi G; Bhaduri A; Sowdhamini R
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D285-6. PubMed ID: 16381866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining and predicting structurally conserved regions in protein superfamilies.
    Huang IK; Pei J; Grishin NV
    Bioinformatics; 2013 Jan; 29(2):175-81. PubMed ID: 23193223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein three-dimensional structural databases: domains, structurally aligned homologues and superfamilies.
    Sowdhamini R; Burke DF; Deane C; Huang JF; Mizuguchi K; Nagarajaram HA; Overington JP; Srinivasan N; Steward RE; Blundell TL
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 1):1168-77. PubMed ID: 10089493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies.
    Sukhwal A; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1652-61. PubMed ID: 23532342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SUPFAM: a database of sequence superfamilies of protein domains.
    Pandit SB; Bhadra R; Gowri VS; Balaji S; Anand B; Srinivasan N
    BMC Bioinformatics; 2004 Mar; 5():28. PubMed ID: 15113407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
    Michnick SW; Shakhnovich E
    Fold Des; 1998; 3(4):239-51. PubMed ID: 9710570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved spatially interacting motifs of protein superfamilies: application to fold recognition and function annotation of genome data.
    Bhaduri A; Ravishankar R; Sowdhamini R
    Proteins; 2004 Mar; 54(4):657-70. PubMed ID: 14997562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. iProClass: an integrated database of protein family, function and structure information.
    Huang H; Barker WC; Chen Y; Wu CH
    Nucleic Acids Res; 2003 Jan; 31(1):390-2. PubMed ID: 12520030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The SUPERFAMILY database in 2004: additions and improvements.
    Madera M; Vogel C; Kummerfeld SK; Chothia C; Gough J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D235-9. PubMed ID: 14681402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive structural classification of ligand-binding motifs in proteins.
    Kinjo AR; Nakamura H
    Structure; 2009 Feb; 17(2):234-46. PubMed ID: 19217394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations.
    Atkinson HJ; Babbitt PC
    PLoS Comput Biol; 2009 Oct; 5(10):e1000541. PubMed ID: 19851441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistently conserved positions in structurally similar, sequence dissimilar proteins: roles in preserving protein fold and function.
    Friedberg I; Margalit H
    Protein Sci; 2002 Feb; 11(2):350-60. PubMed ID: 11790845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of structural motifs using protein structural alphabets and 1D motif-finding methods.
    Ku SY; Hu YJ
    Adv Exp Med Biol; 2010; 680():117-23. PubMed ID: 20865493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein multiple alignment incorporating primary and secondary structure information.
    Kim NK; Xie J
    J Comput Biol; 2006 Dec; 13(10):1735-48. PubMed ID: 17238842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cytochromes.
    Hill EE; Morea V; Chothia C
    J Mol Biol; 2002 Sep; 322(1):205-33. PubMed ID: 12215425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mining protein loops using a structural alphabet and statistical exceptionality.
    Regad L; Martin J; Nuel G; Camproux AC
    BMC Bioinformatics; 2010 Feb; 11():75. PubMed ID: 20132552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.