These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 14631067)

  • 41. MALISAM: a database of structurally analogous motifs in proteins.
    Cheng H; Kim BH; Grishin NV
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D211-7. PubMed ID: 17855399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies.
    Chiang RA; Sali A; Babbitt PC
    PLoS Comput Biol; 2008 Aug; 4(8):e1000142. PubMed ID: 18670595
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-based identification and clustering of protein families and superfamilies.
    Rufino SD; Blundell TL
    J Comput Aided Mol Des; 1994 Feb; 8(1):5-27. PubMed ID: 8035212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Length variations amongst protein domain superfamilies and consequences on structure and function.
    Sandhya S; Rani SS; Pankaj B; Govind MK; Offmann B; Srinivasan N; Sowdhamini R
    PLoS One; 2009; 4(3):e4981. PubMed ID: 19333395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations.
    Wan WY; Milner-White EJ
    J Mol Biol; 1999 Mar; 286(5):1651-62. PubMed ID: 10064721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FoldMiner: structural motif discovery using an improved superposition algorithm.
    Shapiro J; Brutlag D
    Protein Sci; 2004 Jan; 13(1):278-94. PubMed ID: 14691242
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An analysis of core deformations in protein superfamilies.
    Leo-Macias A; Lopez-Romero P; Lupyan D; Zerbino D; Ortiz AR
    Biophys J; 2005 Feb; 88(2):1291-9. PubMed ID: 15542556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway.
    Clarke J; Cota E; Fowler SB; Hamill SJ
    Structure; 1999 Sep; 7(9):1145-53. PubMed ID: 10508783
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PASS2 database for the structure-based sequence alignment of distantly related SCOP domain superfamilies: update to version 5 and added features.
    Gandhimathi A; Ghosh P; Hariharaputran S; Mathew OK; Sowdhamini R
    Nucleic Acids Res; 2016 Jan; 44(D1):D410-4. PubMed ID: 26553811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strict rules determine arrangements of strands in sandwich proteins.
    Kister AE; Fokas AS; Papatheodorou TS; Gelfand IM
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4107-10. PubMed ID: 16537492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino acid recognition by Venus flytrap domains is encoded in an 8-residue motif.
    Acher FC; Bertrand HO
    Biopolymers; 2005; 80(2-3):357-66. PubMed ID: 15810013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finding evolutionary relations beyond superfamilies: fold-based superfamilies.
    Matsuda K; Nishioka T; Kinoshita K; Kawabata T; Go N
    Protein Sci; 2003 Oct; 12(10):2239-51. PubMed ID: 14500881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring dynamics of protein structure determination and homology-based prediction to estimate the number of superfamilies and folds.
    Sadreyev RI; Grishin NV
    BMC Struct Biol; 2006 Mar; 6():6. PubMed ID: 16549009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture.
    Worth CL; Blundell TL
    BMC Evol Biol; 2010 May; 10():161. PubMed ID: 20513243
    [TBL] [Abstract][Full Text] [Related]  

  • 56. FASSM: enhanced function association in whole genome analysis using sequence and structural motifs.
    Gaurav K; Gupta N; Sowdhamini R
    In Silico Biol; 2005; 5(5-6):425-38. PubMed ID: 16268788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural classification of thioredoxin-like fold proteins.
    Qi Y; Grishin NV
    Proteins; 2005 Feb; 58(2):376-88. PubMed ID: 15558583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PASS2 version 4: an update to the database of structure-based sequence alignments of structural domain superfamilies.
    Gandhimathi A; Nair AG; Sowdhamini R
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D531-4. PubMed ID: 22123743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mining super-secondary structure motifs from 3d protein structures: a sequence order independent approach.
    Aung Z; Li J
    Genome Inform; 2007; 19():15-26. PubMed ID: 18546501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.