These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14631067)

  • 61. Satisfaction of hydrogen-bonding potential influences the conservation of polar sidechains.
    Worth CL; Blundell TL
    Proteins; 2009 May; 75(2):413-29. PubMed ID: 18837037
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The SUPERFAMILY database in structural genomics.
    Gough J
    Acta Crystallogr D Biol Crystallogr; 2002 Nov; 58(Pt 11):1897-900. PubMed ID: 12393919
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MotViz: a tool for sequence motif prediction in parallel to structural visualization and analyses.
    Nawaz MS; Ain QU; Seemab U; Rashid S
    Genomics Proteomics Bioinformatics; 2012 Feb; 10(1):35-43. PubMed ID: 22449399
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation.
    Das S; Lee D; Sillitoe I; Dawson NL; Lees JG; Orengo CA
    Bioinformatics; 2015 Nov; 31(21):3460-7. PubMed ID: 26139634
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):773-84. PubMed ID: 19543979
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3MATRIX and 3MOTIF: a protein structure visualization system for conserved sequence motifs.
    Bennett SP; Lu L; Brutlag DL
    Nucleic Acids Res; 2003 Jul; 31(13):3328-32. PubMed ID: 12824319
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Conserved structural features in class I major fimbrial subunits (Pilin) in gram-negative bacteria. Molecular basis of classification in seven subfamilies and identification of intrasubfamily sequence signature motifs which might Be implicated in quaternary structure.
    Girardeau JP; Bertin Y; Callebaut I
    J Mol Evol; 2000 May; 50(5):424-42. PubMed ID: 10824086
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: II. Case studies and applications.
    Bandyopadhyay D; Huan J; Prins J; Snoeyink J; Wang W; Tropsha A
    J Comput Aided Mol Des; 2009 Nov; 23(11):785-97. PubMed ID: 19548090
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The evolution of protein functions and networks: a family-centric approach.
    Dessailly BH; Reid AJ; Yeats C; Lees JG; Cuff A; Orengo CA
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):745-50. PubMed ID: 19614587
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comprehensive analysis of the helix-X-helix motif in soluble proteins.
    Deville J; Rey J; Chabbert M
    Proteins; 2008 Jul; 72(1):115-35. PubMed ID: 18214950
    [TBL] [Abstract][Full Text] [Related]  

  • 73. S4: structure-based sequence alignments of SCOP superfamilies.
    Casbon J; Saqi MA
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D219-22. PubMed ID: 15608181
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Closed loops: persistence of the protein chain returns.
    Berezovsky IN; Kirzhner VM; Kirzhner A; Rosenfeld VR; Trifonov EN
    Protein Eng; 2002 Dec; 15(12):955-7. PubMed ID: 12601134
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins.
    Hotelier T; Renault L; Cousin X; Negre V; Marchot P; Chatonnet A
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D145-7. PubMed ID: 14681380
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural alphabet motif discovery and a structural motif database.
    Ku SY; Hu YJ
    Comput Biol Med; 2012 Jan; 42(1):93-105. PubMed ID: 22099701
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structural motif of phosphate-binding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes.
    Kinoshita K; Sadanami K; Kidera A; Go N
    Protein Eng; 1999 Jan; 12(1):11-4. PubMed ID: 10065705
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Predicting amino acid residues responsible for enzyme specificity solely from protein sequences.
    Shaw E; Dordick JS
    Biotechnol Bioeng; 2002 Aug; 79(3):295-300. PubMed ID: 12115418
    [TBL] [Abstract][Full Text] [Related]  

  • 79. ProClass Protein Family Database.
    Wu CH; Shivakumar S; Huang H
    Nucleic Acids Res; 1999 Jan; 27(1):272-4. PubMed ID: 9847199
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gibbs sampling and helix-cap motifs.
    Kruus E; Thumfort P; Tang C; Wingreen NS
    Nucleic Acids Res; 2005; 33(16):5343-53. PubMed ID: 16174845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.