These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 14631072)

  • 1. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study.
    Börjesson U; Hünenberger PH
    Protein Eng; 2003 Nov; 16(11):831-40. PubMed ID: 14631072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salts on the stability and folding of staphylococcal nuclease.
    Nishimura C; Uversky VN; Fink AL
    Biochemistry; 2001 Feb; 40(7):2113-28. PubMed ID: 11329280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-order packing interactions in triple and quadruple mutants of staphylococcal nuclease.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14012-9. PubMed ID: 11705393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of stabilities of staphylococcal nuclease mutants (Met32-->Ala and Met32-->Leu) using molecular dynamics/free energy perturbation.
    Yamaotsu N; Moriguchi I; Hirono S
    Biochim Biophys Acta; 1993 Dec; 1203(2):243-50. PubMed ID: 8268207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring conformational changes coupled to ionization states using a hybrid Rosetta-MCCE protocol.
    Song Y
    Proteins; 2011 Dec; 79(12):3356-63. PubMed ID: 22072519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14004-11. PubMed ID: 11705392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials.
    Gilis D; Rooman M
    J Mol Biol; 1996 Apr; 257(5):1112-26. PubMed ID: 8632471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of denaturation of staphylococcal nuclease mutants: an intermediate state in protein folding.
    Carra JH; Privalov PL
    FASEB J; 1996 Jan; 10(1):67-74. PubMed ID: 8566550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease.
    Shortle D; Abeygunawardana C
    Structure; 1993 Oct; 1(2):121-34. PubMed ID: 8069625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding.
    Chen HM; Chan SC; Leung KW; Wu JM; Fang HJ; Tsong TY
    FEBS J; 2005 Aug; 272(15):3967-74. PubMed ID: 16045767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.