BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 14631072)

  • 1. Effect of mutations involving charged residues on the stability of staphylococcal nuclease: a continuum electrostatics study.
    Börjesson U; Hünenberger PH
    Protein Eng; 2003 Nov; 16(11):831-40. PubMed ID: 14631072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.
    Green SM; Meeker AK; Shortle D
    Biochemistry; 1992 Jun; 31(25):5717-28. PubMed ID: 1610820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of salts on the stability and folding of staphylococcal nuclease.
    Nishimura C; Uversky VN; Fink AL
    Biochemistry; 2001 Feb; 40(7):2113-28. PubMed ID: 11329280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of the ionizable amino acids to the stability of staphylococcal nuclease.
    Meeker AK; Garcia-Moreno B; Shortle D
    Biochemistry; 1996 May; 35(20):6443-9. PubMed ID: 8639591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the stability of staphylococcal nuclease mutants: component analysis of the free energy difference of denaturation.
    Yamaotsu N; Moriguchi I; Kollman PA; Hirono S
    Biochim Biophys Acta; 1993 Apr; 1163(1):81-8. PubMed ID: 8476933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher-order packing interactions in triple and quadruple mutants of staphylococcal nuclease.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14012-9. PubMed ID: 11705393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of amino acid replacements of glycine 20 on conformational stability and catalysis of staphylococcal nuclease.
    Feng Y; Huang S; Zhang W; Zeng Z; Zou X; Zhong L; Peng J; Jing G
    Biochimie; 2004 Dec; 86(12):893-901. PubMed ID: 15667939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of stabilities of staphylococcal nuclease mutants (Met32-->Ala and Met32-->Leu) using molecular dynamics/free energy perturbation.
    Yamaotsu N; Moriguchi I; Hirono S
    Biochim Biophys Acta; 1993 Dec; 1203(2):243-50. PubMed ID: 8268207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring conformational changes coupled to ionization states using a hybrid Rosetta-MCCE protocol.
    Song Y
    Proteins; 2011 Dec; 79(12):3356-63. PubMed ID: 22072519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of side chain packing in staphylococcal nuclease assessed by systematic double mutant cycles.
    Chen J; Stites WE
    Biochemistry; 2001 Nov; 40(46):14004-11. PubMed ID: 11705392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MCCE analysis of the pKas of introduced buried acids and bases in staphylococcal nuclease.
    Gunner MR; Zhu X; Klein MC
    Proteins; 2011 Dec; 79(12):3306-19. PubMed ID: 21910138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of C-terminal region of Staphylococcal nuclease for foldability, stability, and activity.
    Hirano S; Mihara K; Yamazaki Y; Kamikubo H; Imamoto Y; Kataoka M
    Proteins; 2002 Nov; 49(2):255-65. PubMed ID: 12211005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability changes upon mutation of solvent-accessible residues in proteins evaluated by database-derived potentials.
    Gilis D; Rooman M
    J Mol Biol; 1996 Apr; 257(5):1112-26. PubMed ID: 8632471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of denaturation of staphylococcal nuclease mutants: an intermediate state in protein folding.
    Carra JH; Privalov PL
    FASEB J; 1996 Jan; 10(1):67-74. PubMed ID: 8566550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR analysis of the residual structure in the denatured state of an unusual mutant of staphylococcal nuclease.
    Shortle D; Abeygunawardana C
    Structure; 1993 Oct; 1(2):121-34. PubMed ID: 8069625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding.
    Chen HM; Chan SC; Leung KW; Wu JM; Fang HJ; Tsong TY
    FEBS J; 2005 Aug; 272(15):3967-74. PubMed ID: 16045767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.