These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 14632002)

  • 1. Development of a root feeding system based on a fiber ion-exchange substrate for space plant growth chamber "Vitacycle".
    Berkovich YA; Krivobok NM; Krivobok SM; Matusevich VV; Soldatov VS
    Habitation (Elmsford); 2003; 9(1-2):59-65. PubMed ID: 14632002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a technique to enhance durability of fibrous ion-exchange resin substrate for space greenhouses.
    Krivobok AS; Berkovich YA; Shcherbakova VA; Chuvilskaya NA
    Life Sci Space Res (Amst); 2018 Feb; 16():1-7. PubMed ID: 29475514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Promising technique of mineral supply organization for plants in the condition of microgravity].
    Berkovich IuA; Krivobok AS; Krivobok NM; Smolianina SO
    Aviakosm Ekolog Med; 2014; 48(3):56-62. PubMed ID: 25163340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a vitamin greenhouse for the life support system of the International Space Station and for future interplanetary missions.
    Berkovich YA; Krivobok NM; Sinyak YY; Smolyanina SO; Grigoriev YI; Romanov SY; Guissenberg AS
    Adv Space Res; 2004; 34(7):1552-7. PubMed ID: 15846885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced nutrient root-feeding system for conveyor-type cylindrical plant growth facilities for microgravity.
    Berkovich YA; Krivobok NM; Krivobok AS; Smolyanina SO
    Life Sci Space Res (Amst); 2016 Feb; 8():14-21. PubMed ID: 26948009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microgravity effects on water supply and substrate properties in porous matrix root support systems.
    Bingham GE; Jones SB; Or D; Podolski IG; Levinskikh MA; Sytchov VN; Ivanova T; Kostov P; Sapunova S; Dandolov I; Bubenheim DB; Jahns G
    Acta Astronaut; 2000 Dec; 47(11):839-48. PubMed ID: 11708347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Methods of extending the resource of fiber ionite artificial soils in space greenhouses].
    Krivobok AS; Berkovich IuA; Il'in VK; Chuvil'skaia NA; Shcherbakova VA
    Aviakosm Ekolog Med; 2012; 46(1):51-6. PubMed ID: 22629585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Project of conveyer-type space greenhouse for cosmonauts' supply with vitamin greenery.
    Berkovich YuA ; Krivobok NM; Sinyak YuE
    Adv Space Res; 1998; 22(10):1401-5. PubMed ID: 11542599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of several artificial substitutes of soil for space flight greenhouses].
    Berkovich IuA; Krivobok SM; Krivobok NM; Siniak IuE; Zakharov SB; Matusevich VV
    Aviakosm Ekolog Med; 1997; 31(6):51-5. PubMed ID: 9483282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Microgravity Q; 1992 Apr; 2(2):109-14. PubMed ID: 11541047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A capillary-driven root module for plant growth in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1407-12. PubMed ID: 11542600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive environmental control for optimal results during plant microgravity experiments.
    Kostov P; Ivanova T; Dandolov I; Sapunova S; Ilieva I
    Acta Astronaut; 2002; 51(1-9):213-20. PubMed ID: 12583386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1413-8. PubMed ID: 11542601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growing super-dwarf wheat in Svet on Mir.
    Salisbury FB; Bingham GE; Campbell WF; Carman JG; Bubenheim DL; Yendler B; Jahns G
    Life Support Biosph Sci; 1995; 2(1):31-9. PubMed ID: 11538572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Acta Astronaut; 1993 Aug; 29(8):639-44. PubMed ID: 11541646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake].
    Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009
    [No Abstract]   [Full Text] [Related]  

  • 17. Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MIN-MODULE.
    Blum V
    Adv Space Res; 2003; 31(7):1683-91. PubMed ID: 14503506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of plant growth chambers for the experiments under microgravity conditions (4)-results of two experiments for water circulation in parabolic flight].
    Tani A; Tahara N; Seino K; Kitaya Y; Saito T; Goto E; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):224-5. PubMed ID: 12533008
    [No Abstract]   [Full Text] [Related]  

  • 19. The CELSS Test Facility project: an example of a CELSS flight experiment system.
    MacElroy RD; Straight CL
    Adv Space Res; 1992; 12(5):75-81. PubMed ID: 11537082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of a minerals supply system for plants in a conveyor-type space greenhouse].
    Berkovich IuA; Krivobok AS; Krivobok NM; Smolianina SO
    Aviakosm Ekolog Med; 2013; 47(5):53-8. PubMed ID: 24490289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.