These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 14632064)
1. Monolayer-protected gold nanoparticles as a stationary phase for open tubular gas chromatography. Gross GM; Nelson DA; Grate JW; Synovec RE Anal Chem; 2003 Sep; 75(17):4558-64. PubMed ID: 14632064 [TBL] [Abstract][Full Text] [Related]
2. Development and evaluation of gold-centered monolayer protected nanoparticle stationary phases for gas chromatography. Gross GM; Grate JW; Synovec RE J Chromatogr A; 2004 Dec; 1060(1-2):225-36. PubMed ID: 15628165 [TBL] [Abstract][Full Text] [Related]
3. Monolayer-protected gold nanoparticles as an efficient stationary phase for open tubular gas chromatography using a square capillary model for chip-based gas chromatography in square cornered microfabricated channels. Gross GM; Grate JW; Synovec RE J Chromatogr A; 2004 Mar; 1029(1-2):185-92. PubMed ID: 15032364 [TBL] [Abstract][Full Text] [Related]
4. Peak focusing based on stationary phase thickness gradient. Li MW; Zhu H; Zhou M; She J; Li Z; Kurabayashi K; Fan X J Chromatogr A; 2020 Mar; 1614():460737. PubMed ID: 31831145 [TBL] [Abstract][Full Text] [Related]
5. Single fiber-in-capillary annular column for gas chromatographic separation. Li P; Xu Z; Yang X; Bi W; Xiao D; Choi MM J Chromatogr A; 2009 Apr; 1216(15):3343-8. PubMed ID: 19268954 [TBL] [Abstract][Full Text] [Related]
6. The use of silica nanoparticles for gas chromatographic separation. Na N; Cui X; De Beer T; Liu T; Tang T; Sajid M; Ouyang J J Chromatogr A; 2011 Jul; 1218(28):4552-8. PubMed ID: 21652043 [TBL] [Abstract][Full Text] [Related]
7. Preparation, characterization and application of polymethacrylate-based monolithic columns for fast and efficient separation of alkanes, alcohols, alkylbenzenes and isomeric mixtures by gas chromatography. Obbed MS; Aqel A; Al Othman ZA; Badjah-Hadj-Ahmed AY J Chromatogr A; 2018 Jun; 1555():89-99. PubMed ID: 29724647 [TBL] [Abstract][Full Text] [Related]
8. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times. McGinitie TM; Ebrahimi-Najafabadi H; Harynuk JJ J Chromatogr A; 2014 Feb; 1330():69-73. PubMed ID: 24484693 [TBL] [Abstract][Full Text] [Related]
9. Sulfolane as a novel stationary phase for analytical separations by gas chromatography. Darko E; Thurbide KB Anal Chim Acta; 2022 Jan; 1189():339254. PubMed ID: 34815033 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the plate height of capillary columns operated at any inlet pressure of the carrier gas by using few retention data measured under isobaric conditions. Vezzani S; Moretti P; Castello G J Chromatogr A; 2003 Apr; 994(1-2):103-25. PubMed ID: 12779223 [TBL] [Abstract][Full Text] [Related]
11. Chiral 3D open-framework material Ni(D-cam)(H2O)2 used as GC stationary phase. Xie S; Wang B; Zhang X; Zhang J; Zhang M; Yuan L Chirality; 2014 Jan; 26(1):27-32. PubMed ID: 24408851 [TBL] [Abstract][Full Text] [Related]
12. High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Reid VR; Stadermann M; Bakajin O; Synovec RE Talanta; 2009 Feb; 77(4):1420-5. PubMed ID: 19084659 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization - including in situ Small Angle X-Ray Scattering - of gas chromatographic capillary columns with mesoporous silica thin films as stationary phases. Lefebvre D; Rayes RS; Jousseaume V; Maret M; Veyre L; Charleux B; Thieuleux C; Ricoul F J Chromatogr A; 2015 Sep; 1413():85-93. PubMed ID: 26319377 [TBL] [Abstract][Full Text] [Related]
14. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography. Xie SM; Zhang XH; Zhang ZJ; Zhang M; Jia J; Yuan LM Anal Bioanal Chem; 2013 Apr; 405(10):3407-12. PubMed ID: 23361228 [TBL] [Abstract][Full Text] [Related]
15. Silica-based hybrid porous layers to enhance the retention and efficiency of open tubular capillary columns with a 5 μm inner diame9ter. Hara T; Izumi Y; Nakao M; Hata K; Baron GV; Bamba T; Desmet G J Chromatogr A; 2018 Dec; 1580():63-71. PubMed ID: 30424964 [TBL] [Abstract][Full Text] [Related]
16. Open-tubular gas chromatography using capillary coated with octadecylamine-capped gold nanoparticles. Qu QS; Shen F; Shen M; Hu XY; Yang GJ; Wang CY; Yan C; Zhang YK Anal Chim Acta; 2008 Feb; 609(1):76-81. PubMed ID: 18243876 [TBL] [Abstract][Full Text] [Related]
18. Separation performance of a star-shaped truxene-based stationary phase functionalized with peripheral 3,4-ethylenedioxythiophene moieties for capillary gas chromatography. Yang Y; Qi M; Wang J J Chromatogr A; 2018 Nov; 1578():67-75. PubMed ID: 30297233 [TBL] [Abstract][Full Text] [Related]
19. Characterization and utilization of a novel triflate ionic liquid stationary phase for use in comprehensive two-dimensional gas chromatography. Reid VR; Crank JA; Armstrong DW; Synovec RE J Sep Sci; 2008 Oct; 31(19):3429-36. PubMed ID: 18798215 [TBL] [Abstract][Full Text] [Related]
20. Separation performance of guanidinium-based ionic liquids as stationary phases for gas chromatography. Qiao L; Lu K; Qi M; Fu R J Chromatogr A; 2013 Feb; 1276():112-9. PubMed ID: 23313301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]