These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 14632433)
1. Support vector machines for the estimation of aqueous solubility. Lind P; Maltseva T J Chem Inf Comput Sci; 2003; 43(6):1855-9. PubMed ID: 14632433 [TBL] [Abstract][Full Text] [Related]
2. Bias in error estimation when using cross-validation for model selection. Varma S; Simon R BMC Bioinformatics; 2006 Feb; 7():91. PubMed ID: 16504092 [TBL] [Abstract][Full Text] [Related]
3. Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? Varnek A; Kireeva N; Tetko IV; Baskin II; Solov'ev VP J Chem Inf Model; 2007; 47(3):1111-22. PubMed ID: 17381081 [TBL] [Abstract][Full Text] [Related]
4. Support vector machine and the heuristic method to predict the solubility of hydrocarbons in electrolyte. Ma W; Zhang X; Luan F; Zhang H; Zhang R; Liu M; Hu Z; Fan BT J Phys Chem A; 2005 Apr; 109(15):3485-92. PubMed ID: 16833686 [TBL] [Abstract][Full Text] [Related]
5. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy. Yu H; Lin H; Xu H; Ying Y; Li B; Pan X J Agric Food Chem; 2008 Jan; 56(2):307-13. PubMed ID: 18167072 [TBL] [Abstract][Full Text] [Related]
6. An accurate QSPR study of O-H bond dissociation energy in substituted phenols based on support vector machines. Xue CX; Zhang RS; Liu HX; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(2):669-77. PubMed ID: 15032549 [TBL] [Abstract][Full Text] [Related]
7. Two criteria for model selection in multiclass support vector machines. Wang L; Xue P; Chan KL IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1432-48. PubMed ID: 19022717 [TBL] [Abstract][Full Text] [Related]
8. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine. Gao T; Sun SL; Shi LL; Li H; Li HZ; Su ZM; Lu YH J Chem Phys; 2009 May; 130(18):184104. PubMed ID: 19449905 [TBL] [Abstract][Full Text] [Related]
9. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. Geppert H; Horváth T; Gärtner T; Wrobel S; Bajorath J J Chem Inf Model; 2008 Apr; 48(4):742-6. PubMed ID: 18318473 [TBL] [Abstract][Full Text] [Related]
10. Tuning support vector machines for minimax and Neyman-Pearson classification. Davenport MA; Baraniuk RG; Scott CD IEEE Trans Pattern Anal Mach Intell; 2010 Oct; 32(10):1888-98. PubMed ID: 20724764 [TBL] [Abstract][Full Text] [Related]
11. Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. Liu HX; Zhang RS; Yao XJ; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(1):161-7. PubMed ID: 14741023 [TBL] [Abstract][Full Text] [Related]
12. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. Kamruzzaman J; Begg RK IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644 [TBL] [Abstract][Full Text] [Related]
15. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine. Hou T; Wang J; Li Y J Chem Inf Model; 2007; 47(6):2408-15. PubMed ID: 17929911 [TBL] [Abstract][Full Text] [Related]
16. Fast and efficient strategies for model selection of Gaussian support vector machine. Xu Z; Dai M; Meng D IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1292-307. PubMed ID: 19342351 [TBL] [Abstract][Full Text] [Related]
17. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. Geppert H; Humrich J; Stumpfe D; Gärtner T; Bajorath J J Chem Inf Model; 2009 Apr; 49(4):767-79. PubMed ID: 19309114 [TBL] [Abstract][Full Text] [Related]
18. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. Bender A; Mussa HY; Glen RC; Reiling S J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830 [TBL] [Abstract][Full Text] [Related]
19. Support vector machines-based quantitative structure-property relationship for the prediction of heat capacity. Xue CX; Zhang RS; Liu HX; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1267-74. PubMed ID: 15272834 [TBL] [Abstract][Full Text] [Related]
20. Virtual screening of Abl inhibitors from large compound libraries by support vector machines. Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]