These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 14633116)
1. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. van de Vossenberg JL; Joblin KN Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116 [TBL] [Abstract][Full Text] [Related]
2. Microbial biohydrogenation of oleic acid to trans isomers in vitro. Mosley EE; Powell GL; Riley MB; Jenkins TC J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671 [TBL] [Abstract][Full Text] [Related]
3. Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures. Ramos Morales E; Mata Espinosa MA; McKain N; Wallace RJ J Anim Sci; 2012 Dec; 90(13):4943-50. PubMed ID: 22829608 [TBL] [Abstract][Full Text] [Related]
4. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. Duckett SK; Andrae JG; Owens FN J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177 [TBL] [Abstract][Full Text] [Related]
5. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. Kemp P; White RW; Lander DJ J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930 [TBL] [Abstract][Full Text] [Related]
6. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Nam IS; Garnsworthy PC J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387 [TBL] [Abstract][Full Text] [Related]
7. The hydrogenation of gamma-linolenic acid by pure cultures of two rumen bacteria. Kemp P; Lander DJ Biochem J; 1983 Nov; 216(2):519-22. PubMed ID: 6318740 [TBL] [Abstract][Full Text] [Related]
8. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes. Laverroux S; Glasser F; Gillet M; Joly C; Doreau M Lipids; 2011 Sep; 46(9):843-50. PubMed ID: 21706384 [TBL] [Abstract][Full Text] [Related]
9. Augmentation of vaccenate production and suppression of vaccenate biohydrogenation in cultures of mixed ruminal microbes. Fukuda S; Suzuki Y; Murai M; Asanuma N; Hino T J Dairy Sci; 2006 Mar; 89(3):1043-51. PubMed ID: 16507700 [TBL] [Abstract][Full Text] [Related]
10. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18. Jeyanathan J; Escobar M; Wallace RJ; Fievez V; Vlaeminck B BMC Microbiol; 2016 Jun; 16():104. PubMed ID: 27283157 [TBL] [Abstract][Full Text] [Related]
11. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Wasowska I; Maia MR; Niedźwiedzka KM; Czauderna M; Ribeiro JM; Devillard E; Shingfield KJ; Wallace RJ Br J Nutr; 2006 Jun; 95(6):1199-211. PubMed ID: 16768845 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria: products and mechanisms. McKain N; Shingfield KJ; Wallace RJ Microbiology (Reading); 2010 Feb; 156(Pt 2):579-588. PubMed ID: 19926650 [TBL] [Abstract][Full Text] [Related]
15. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. Zened A; Troegeler-Meynadier A; Nicot MC; Combes S; Cauquil L; Farizon Y; Enjalbert F J Dairy Sci; 2011 Nov; 94(11):5634-45. PubMed ID: 22032386 [TBL] [Abstract][Full Text] [Related]
16. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro. Troegeler-Meynadier A; Nicot MC; Bayourthe C; Moncoulon R; Enjalbert F J Dairy Sci; 2003 Dec; 86(12):4054-63. PubMed ID: 14740844 [TBL] [Abstract][Full Text] [Related]
17. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. Paillard D; McKain N; Rincon MT; Shingfield KJ; Givens DI; Wallace RJ J Appl Microbiol; 2007 Oct; 103(4):1251-61. PubMed ID: 17897229 [TBL] [Abstract][Full Text] [Related]
18. Quantitative aspects of fatty acid biohydrogenation, absorption and transfer into milk fat in the lactating goat, with special reference to the cis- and trans-isomers of octadecenoate and linoleate. Bickerstaffe R; Noakes DE; Annison EF Biochem J; 1972 Nov; 130(2):607-17. PubMed ID: 4664587 [TBL] [Abstract][Full Text] [Related]
19. Differential biohydrogenation and isomerization of [U-(13)C]oleic and [1-(13)C]oleic acids by mixed ruminal microbes. Mosley EE; Nudda A; Corato A; Rossi E; Jenkins T; McGuire MA Lipids; 2006 May; 41(5):513-7. PubMed ID: 16933796 [TBL] [Abstract][Full Text] [Related]
20. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. Lee YJ; Jenkins TC J Nutr; 2011 Aug; 141(8):1445-50. PubMed ID: 21653571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]