These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 146351)
1. Anomalous base-stacking of the N1-oxide of AMP. Mantsch HH; Bârzu O Z Naturforsch C Biosci; 1977; 32(11-12):901-4. PubMed ID: 146351 [TBL] [Abstract][Full Text] [Related]
2. Complex formation of carnosine with purine nucleotides in aqueous solution. Neurohr KJ; Mantsch HH Z Naturforsch C Biosci; 1980; 35(7-8):557-61. PubMed ID: 7415408 [TBL] [Abstract][Full Text] [Related]
3. On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (epsilon-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of epsilon-AMP, AMP, ADP and ATP. Sigel H; Scheller KH Eur J Biochem; 1984 Jan; 138(2):291-9. PubMed ID: 6321171 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamics of stacking and of self-association of the dinucleoside monophosphate m2(6)A-U from proton NMR chemical shifts: differential concentration temperature profile method. Hartel AJ; Lankhorst PP; Altona C Eur J Biochem; 1982 Dec; 129(2):343-57. PubMed ID: 6295763 [TBL] [Abstract][Full Text] [Related]
5. 13C NMR investigations on the stacking of 5'-AMP with tryptamine. Wray V; Wagner KG Z Naturforsch C Biosci; 1977; 32(5-6):315-20. PubMed ID: 141807 [TBL] [Abstract][Full Text] [Related]
6. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Fritzsche H; Petri I; Schütz H; Weller K; Sedmera P; Lang H Biophys Chem; 1980 Feb; 11(1):109-19. PubMed ID: 7357061 [TBL] [Abstract][Full Text] [Related]
7. Molecular orientation in the stacked dimer form of 5"AMP in aqueous solution. A study by the NMR-desert method. Imoto T Biochim Biophys Acta; 1977 Apr; 475(3):409-16. PubMed ID: 856271 [TBL] [Abstract][Full Text] [Related]
8. Self-association and protonation of adenosine 5'-monophosphate in comparison with its 2'- and 3'-analogues and tubercidin 5'-monophosphate (7-deaza-AMP). Tribolet R; Sigel H Eur J Biochem; 1987 Mar; 163(2):353-63. PubMed ID: 3028802 [TBL] [Abstract][Full Text] [Related]
9. Identification of AMP N1-oxide in royal jelly as a component neurotrophic toward cultured rat pheochromocytoma PC12 cells. Hattori N; Nomoto H; Mishima S; Inagaki S; Goto M; Sako M; Furukawa S Biosci Biotechnol Biochem; 2006 Apr; 70(4):897-906. PubMed ID: 16636457 [TBL] [Abstract][Full Text] [Related]
10. Tryptamine-adenosine 5'-monophosphate interactions as studied by nuclear magnetic resonance and relaxation. Perly B; Langlet G; Chachaty C Biochim Biophys Acta; 1980 Mar; 628(2):161-73. PubMed ID: 7357034 [TBL] [Abstract][Full Text] [Related]
11. The interactions between nucleic acids and polyamines. I. High resolution carbon-13 and hydrogen-1 nuclear magnetic resonance studies of spermidine and 5'-AMP. Bunce S; Kong ES Biophys Chem; 1978 Sep; 8(4):357-68. PubMed ID: 728538 [TBL] [Abstract][Full Text] [Related]
12. Intramolecular hydrogen bonding in flavin adenine dinucleotide. Raszka M; Kaplan NO Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4546-50. PubMed ID: 4373718 [TBL] [Abstract][Full Text] [Related]
13. Influence of the 2'-hydroxyl group and of 6-N-methylation on the conformation of adenine dinucleoside monophosphates in solution. A nuclear magnetic resonance and circular dichroism study. Olsthoorn CS; Doornbos J; de Leeuw HP; Altona C Eur J Biochem; 1982 Jul; 125(2):367-82. PubMed ID: 7117238 [TBL] [Abstract][Full Text] [Related]
14. [Study of intermolecular interactions and self-organization of adenylic nucleotides by the spin label method]. Petrov AI; Sukhorukov BI Mol Biol (Mosk); 1980; 14(2):439-47. PubMed ID: 6247647 [TBL] [Abstract][Full Text] [Related]
15. Self-association of adenosine 5'-monophosphate (5'-AMP) as a function of pH and in comparison with adenosine, 2'-AMP and 3'-AMP. Tribolet R; Sigel H Biophys Chem; 1987 Aug; 27(2):119-30. PubMed ID: 3663840 [TBL] [Abstract][Full Text] [Related]
16. Conformation of adenosine 3',5'-monophosphate in solution as studied by the NMR-desert method. II. Self-association and temperature-dependent glycosidic isomerization at pH 7. Hayashi F; Akasaka K; Hatano H Biochim Biophys Acta; 1979 Dec; 588(2):181-92. PubMed ID: 228755 [TBL] [Abstract][Full Text] [Related]
17. [Study of carnosine complexes with nucleotides by the method of high resolution nuclear magnetic resonance]. Severin SE; Bushuev VN; Shnol' SE; Vishnevskaia ZI; Golovanov IB Biokhimiia; 1976 Jan; 41(1):197-201. PubMed ID: 1276259 [TBL] [Abstract][Full Text] [Related]
18. 300 MHz NMR study on the effect of base stacking on backbone conformational flexibility in oxy- and deoxy- adenyl dinucleosides. Evans FE; Lee CH; Sarma RH Biochem Biophys Res Commun; 1975 Mar; 63(1):106-14. PubMed ID: 1079133 [No Abstract] [Full Text] [Related]
19. Interaction of La (III) and Tb (III) ions with purine nucleotides: evidence for metal chelation (N-7-M-PO3) and the effect of macrochelate formation on the nucleotide sugar conformation. Tajmir-Riahi HA Biopolymers; 1991 Aug; 31(9):1065-75. PubMed ID: 1664746 [TBL] [Abstract][Full Text] [Related]
20. [Nucleotide conformation in aqueous solutions by the NMR spectrum lanthanide shift method]. Babushkina TA; Buikliskiĭ VD; Zolin VF; Koreneva LG; Sheveleva IS Biofizika; 1981; 26(2):187-92. PubMed ID: 7260123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]