These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 146354)
61. Conditions modulating the ionic selectivity of transport by monensin examined on Enterococcus hirae (Streptococcus faecalis) by 23Na-NMR and K+ atomic absorption. Rabaste F; Jeminet G; Dauphin G; Delort AM Biochim Biophys Acta; 1992 Jul; 1108(2):177-82. PubMed ID: 1637842 [TBL] [Abstract][Full Text] [Related]
62. [The Na(+)-ATPase and Na+ circulation of Streptococcus faecalis]. Kakinuma Y Seikagaku; 1991 Feb; 63(2):133-8. PubMed ID: 1828479 [No Abstract] [Full Text] [Related]
63. Actinomycin D inhibition of amino acid transport in Streptococcus faecalis. Holden JT; Utech NM Biochim Biophys Acta; 1967 May; 135(2):351-4. PubMed ID: 4962529 [No Abstract] [Full Text] [Related]
64. Characterization of two peptide-transport systems in Streptococcus faecalis. Nisbet TM; Payne JW Biochem Soc Trans; 1980 Dec; 8(6):705-6. PubMed ID: 6780386 [No Abstract] [Full Text] [Related]
65. Potassium transport in the rabbit renal proximal tubule: effects of barium, ouabain, valinomycin, and other ionophores. Soltoff SP; Mandel LJ J Membr Biol; 1986; 94(2):153-61. PubMed ID: 3031306 [TBL] [Abstract][Full Text] [Related]
66. [Proof of the possibility of univalent cation active transport in rat liver mitochondria]. Skul'skiĭ IA; Glazunov VV; Savina MV Dokl Akad Nauk SSSR; 1979; 246(2):504-8. PubMed ID: 582434 [No Abstract] [Full Text] [Related]
67. Phosphate-dependent sodium transport in S. faecalis investigated by 23Na and 31P NMR. Rabaste F; Dauphin G; Jeminet G; Guyot J; Delort AM Biochem Biophys Res Commun; 1991 Nov; 181(1):74-9. PubMed ID: 1958221 [TBL] [Abstract][Full Text] [Related]
68. [In vitro study of various ionophore antibiotics and some of their derivatives. II. Characterization of the ionophore properties of the compounds in a model system for Na+ and K+ ions]. Caffarel-Mendez S; Demuynck C; Jeminet G Reprod Nutr Dev (1980); 1987; 27(5):921-8. PubMed ID: 3685617 [TBL] [Abstract][Full Text] [Related]
69. A rapid bioassay method for gramicidin by measuring rubidium ion leakage from Streptococcus faecalis. Miller SJ J Appl Bacteriol; 1979 Aug; 47(1):161-5. PubMed ID: 91602 [No Abstract] [Full Text] [Related]
71. A transmembrane pH gradient in Streptococcus faecalis: origin, and dissipation by proton conductors and N,N'-dicyclohexylcarbodimide. Harold FM; Pavlasová E; Baarda JR Biochim Biophys Acta; 1970; 196(2):235-44. PubMed ID: 4244306 [No Abstract] [Full Text] [Related]
72. 'Don't talk to me about permeability'. The tenth Marjory Stephenson memorial lecture. Gale EF J Gen Microbiol; 1971 Sep; 68(1):1-14. PubMed ID: 5003229 [No Abstract] [Full Text] [Related]
73. A chronoamperometric method to estimate changes in the membrane composition of ion-selective membranes. Pendley BD; Gyurcsányi RE; Buck RP; Lindner E Anal Chem; 2001 Oct; 73(19):4599-606. PubMed ID: 11605836 [TBL] [Abstract][Full Text] [Related]
74. Voltage-gated cation conductance channel from fragmented sarcoplasmic reticulum: steady-state electrical properties. Miller C J Membr Biol; 1978 Apr; 40(1):1-23. PubMed ID: 650672 [TBL] [Abstract][Full Text] [Related]
75. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin. Ginsburg H; Stark G Biochim Biophys Acta; 1976 Dec; 455(3):685-700. PubMed ID: 1036715 [TBL] [Abstract][Full Text] [Related]
76. [Directed search for streptomycetes that are producers of ionophoric antibiotics]. Sverdlova AN; Nefelova MV; Volkova EI; Mukhanova IIu; Likhacheva AA; Zaretskaia MSh; Shaburova OV; Semenenko MN; Iaglova LG Mol Gen Mikrobiol Virusol; 1995; (4):29-35. PubMed ID: 8604232 [TBL] [Abstract][Full Text] [Related]
77. Temperature-jump experiments on thin lipid membranes in the presence of valinomycin. Knoll W; Stark G J Membr Biol; 1977 Oct; 37(1):13-28. PubMed ID: 915934 [TBL] [Abstract][Full Text] [Related]
78. Selective ion binding and membrane activity of synthetic cyclopeptides. Gisin BF; Ting-Beall HP; Davis DG; Grell E; Tosteson DC Biochim Biophys Acta; 1978 May; 509(2):201-17. PubMed ID: 656410 [TBL] [Abstract][Full Text] [Related]
79. Combination of the electrogenic ionophores, valinomycin and CCCP, can lead to non-electrogenic K+/H+ exchange on bilayer lipid membranes. Orlov VN; Antonenko YN; Bulychev AA; Yaguzhinsky LS FEBS Lett; 1994 May; 345(2-3):104-6. PubMed ID: 7515356 [TBL] [Abstract][Full Text] [Related]
80. Induction of an electrogenic transfer of monovalent cations (K+, NH4+) in thylakoid membranes by N,N'-dicyclohexylcarbodiimide. Opanasenko VK; Red'ko TP; Gubanova ON; Yaguzhinsky LS FEBS Lett; 1992 Aug; 307(3):280-2. PubMed ID: 1379541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]