These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effect of HERG-like potassium channel blocker on the carotid body chemoreception. Osanai S; Takahashi T; Nakano H; Ohsaki Y; Kikuchi K Adv Exp Med Biol; 2003; 536():117-22. PubMed ID: 14635656 [No Abstract] [Full Text] [Related]
7. Contribution of neural and endothelial isoforms of the nitric oxide synthase to the inhibitory effects of NO on the cat carotid body. Valdes V; Mosqueira M; Iturriaga R Adv Exp Med Biol; 2003; 536():345-51. PubMed ID: 14635687 [No Abstract] [Full Text] [Related]
8. K+ currents of glomus cells and chemosensory functions of carotid body. Donnelly DF Respir Physiol; 1999 Apr; 115(2):151-60. PubMed ID: 10385029 [TBL] [Abstract][Full Text] [Related]
9. Importance of oxygen supply in the carotid body for chemoreception. Acker H Biomed Biochim Acta; 1987; 46(12):885-98. PubMed ID: 3453068 [No Abstract] [Full Text] [Related]
10. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells. Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR Adv Exp Med Biol; 2000; 475():241-8. PubMed ID: 10849664 [TBL] [Abstract][Full Text] [Related]
11. NO and CO as second messengers in oxygen sensing in the carotid body. Prabhakar NR Respir Physiol; 1999 Apr; 115(2):161-8. PubMed ID: 10385030 [TBL] [Abstract][Full Text] [Related]
12. Cyclic nucleotide analogs do not interfere with hypoxic inhibition of K+ currents in isolated rat type I carotid body cells. Hatton CJ; Peers C Adv Exp Med Biol; 1996; 410():93-6. PubMed ID: 9030283 [No Abstract] [Full Text] [Related]
13. Hypoxia induces production of nitric oxide and reactive oxygen species in glomus cells of rat carotid body. Yamamoto Y; König P; Henrich M; Dedio J; Kummer W Cell Tissue Res; 2006 Jul; 325(1):3-11. PubMed ID: 16534602 [TBL] [Abstract][Full Text] [Related]
14. Carotid body NO-CO interaction and chronic hypoxia. Di Giulio C; Grilli A; Ciocca I; Macrì MA; Daniele F; Sabatino G; Cacchio M; De Lutiis MA; Da Porto R; Di Natale F; Felaco M Adv Exp Med Biol; 2000; 475():685-90. PubMed ID: 10849709 [No Abstract] [Full Text] [Related]
15. Expression and function of presynaptic neurotransmitter receptors in the chemoafferent pathway of the rat carotid body. Fearon IM; Zhang M; Vollmer C; Nurse CA Adv Exp Med Biol; 2003; 536():297-303. PubMed ID: 14635681 [No Abstract] [Full Text] [Related]
16. Profiles for ATP and adenosine release at the carotid body in response to O2 concentrations. Conde SV; Monteiro EC Adv Exp Med Biol; 2006; 580():179-84; discussion 351-9. PubMed ID: 16683716 [No Abstract] [Full Text] [Related]
17. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Li Q; Sun B; Wang X; Jin Z; Zhou Y; Dong L; Jiang LH; Rong W Antioxid Redox Signal; 2010 May; 12(10):1179-89. PubMed ID: 19803741 [TBL] [Abstract][Full Text] [Related]
18. Evidence that nitric oxide plays a role in O2 sensing from tissue NO and PO2 measurements in cat carotid body. Buerk DG; Lahiri S Adv Exp Med Biol; 2000; 475():337-47. PubMed ID: 10849673 [No Abstract] [Full Text] [Related]
19. Identification of an oxygen-sensitive potassium channel in neonatal rat carotid body type I cells. Williams BA; Buckler KJ Adv Exp Med Biol; 2000; 475():419-24. PubMed ID: 10849682 [No Abstract] [Full Text] [Related]
20. Properties of ionic currents from isolated adult rat carotid body chemoreceptor cells: effect of hypoxia. López-López JR; González C; Pérez-García MT J Physiol; 1997 Mar; 499 ( Pt 2)(Pt 2):429-41. PubMed ID: 9080372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]