These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 14635651)

  • 21. A common oxygen sensor regulates the sensory discharge and glomus cell HIF-1alpha in the rat carotid body.
    Lahiri S; Antosiewicz J; Pokorski M
    J Physiol Pharmacol; 2007 Nov; 58 Suppl 5(Pt 1):327-33. PubMed ID: 18204143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen sensing in the body.
    Lahiri S; Roy A; Baby SM; Hoshi T; Semenza GL; Prabhakar NR
    Prog Biophys Mol Biol; 2006 Jul; 91(3):249-86. PubMed ID: 16137743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of oxygen sensing during intermittent hypoxia.
    Prabhakar NR; Peng YJ; Overholt JL; Kumar GK
    Methods Enzymol; 2004; 381():107-20. PubMed ID: 15063668
    [No Abstract]   [Full Text] [Related]  

  • 24. The metabolic hypothesis revisited.
    Rozanov C; Roy A; Mokashi A; Osanai S; Daudu P; Storey B; Lahiri S
    Adv Exp Med Biol; 2000; 475():397-404. PubMed ID: 10849679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carotid body oxygen sensing and adaptation to hypoxia.
    López-Barneo J; Macías D; Platero-Luengo A; Ortega-Sáenz P; Pardal R
    Pflugers Arch; 2016 Jan; 468(1):59-70. PubMed ID: 26373853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing.
    Bernardini A; Wolf A; Brockmeier U; Riffkin H; Metzen E; Acker-Palmer A; Fandrey J; Acker H
    Am J Physiol Cell Physiol; 2020 Apr; 318(4):C719-C731. PubMed ID: 31967857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of MaxiK-type calcium dependent K+ channels in rat carotid body hypoxia transduction during postnatal development.
    Donnelly DF; Kim I; Yang D; Carroll JL
    Respir Physiol Neurobiol; 2011 Jun; 177(1):1-8. PubMed ID: 21356332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An unusual cytochrome a592 with low PO2 affinity correlates with afferent discharge in the carotid body.
    Huckstorf C; Streller T; Acker H
    Adv Exp Med Biol; 2003; 536():75-83. PubMed ID: 14635652
    [No Abstract]   [Full Text] [Related]  

  • 29. Regulation of K+ currents by CO in carotid body type I cells and pulmonary artery smooth muscle cells.
    Kumar P; Dubuis E; Vandier C
    Adv Exp Med Biol; 2003; 536():147-54. PubMed ID: 14635661
    [No Abstract]   [Full Text] [Related]  

  • 30. Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation.
    López-Barneo J; Ortega-Sáenz P; González-Rodríguez P; Fernández-Agüera MC; Macías D; Pardal R; Gao L
    Mol Aspects Med; 2016; 47-48():90-108. PubMed ID: 26709054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interplay between the cytosolic Ca2+ increase and potential changes in glomus cells in response to chemical stimuli.
    Hayashida Y; Yoshizaki K; Kusakabe T
    Adv Exp Med Biol; 2000; 475():691-6. PubMed ID: 10849710
    [No Abstract]   [Full Text] [Related]  

  • 32. Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament.
    Jackson A; Nurse C
    J Neurobiol; 1995 Apr; 26(4):485-96. PubMed ID: 7602313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose sensing cells in the carotid body.
    García-Fernández M; Ortega-Sáenz P; Pardal R; López-Barneo J
    Adv Exp Med Biol; 2003; 536():47-53. PubMed ID: 14635648
    [No Abstract]   [Full Text] [Related]  

  • 34. Redox-based inhibition of K+ channel/current is not related to hypoxic chemosensory responses in rat carotid body.
    Roy A; Rozanov C; Mokashi A; Lahiri S
    Adv Exp Med Biol; 2000; 475():645-53. PubMed ID: 10849705
    [No Abstract]   [Full Text] [Related]  

  • 35. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia: an involvement of constitutive and inducible nitric oxide synthases.
    Ye JS; Tipoe GL; Fung PC; Fung ML
    Pflugers Arch; 2002 May; 444(1-2):178-85. PubMed ID: 11976930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen sensing by ion channels.
    López-Barneo J; Ortega-Sáenz P; Molina A; Franco-Obregón A; Ureña J; Castellano A
    Kidney Int; 1997 Feb; 51(2):454-61. PubMed ID: 9027721
    [No Abstract]   [Full Text] [Related]  

  • 37. Different O2-sensing mechanisms by different K+ channels.
    Haddad GG; Liu H
    Adv Exp Med Biol; 2000; 475():441-52. PubMed ID: 10849685
    [No Abstract]   [Full Text] [Related]  

  • 38. Is cytochrome P-450 involved in hypoxic inhibition of K+ currents in rat type I carotid body cells?
    Hatton CJ; Peers C
    Adv Exp Med Biol; 1996; 410():89-92. PubMed ID: 9030282
    [No Abstract]   [Full Text] [Related]  

  • 39. Endothelins and nitric oxide: vasoactive modulators of carotid body chemoreception.
    Rey S; Iturriaga R
    Curr Neurovasc Res; 2004 Dec; 1(5):465-73. PubMed ID: 16181094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxygen sensing with ion channels.
    Kim D
    Channels (Austin); 2014; 8(4):290-1. PubMed ID: 25068295
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.