These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 14635729)

  • 21. Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold.
    Bazan JF; Weaver LH; Roderick SL; Huber R; Matthews BW
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2473-7. PubMed ID: 8146141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression.
    Hu X; Addlagatta A; Lu J; Matthews BW; Liu JO
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18148-53. PubMed ID: 17114291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid residues involved in the functional integrity of Escherichia coli methionine aminopeptidase.
    Chiu CH; Lee CZ; Lin KS; Tam MF; Lin LY
    J Bacteriol; 1999 Aug; 181(15):4686-9. PubMed ID: 10419973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2.
    Sin N; Meng L; Wang MQ; Wen JJ; Bornmann WG; Crews CM
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6099-103. PubMed ID: 9177176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lead optimization of methionine aminopeptidase-2 (MetAP2) inhibitors containing sulfonamides of 5,6-disubstituted anthranilic acids.
    Wang GT; Mantei RA; Kawai M; Tedrow JS; Barnes DM; Wang J; Zhang Q; Lou P; Garcia LA; Bouska J; Yates M; Park C; Judge RA; Lesniewski R; Sheppard GS; Bell RL
    Bioorg Med Chem Lett; 2007 May; 17(10):2817-22. PubMed ID: 17350258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A tyrosine residue essential for catalytic activity in aminopeptidase A.
    Vazeux G; Iturrioz X; Corvol P; Llorens-Cortès C
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):883-9. PubMed ID: 9581570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cell-based assay that targets methionine aminopeptidase in a physiologically relevant environment.
    Chai SC; Ye QZ
    Bioorg Med Chem Lett; 2010 Apr; 20(7):2129-32. PubMed ID: 20207144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into the remarkable affinity and selectivity of the aminobenzosuberone scaffold for the M1 aminopeptidases family based on structure analysis.
    Peng G; McEwen AG; Olieric V; Schmitt C; Albrecht S; Cavarelli J; Tarnus C
    Proteins; 2017 Aug; 85(8):1413-1421. PubMed ID: 28383176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural evidence that the methionyl aminopeptidase from Escherichia coli is a mononuclear metalloprotease.
    Cosper NJ; D'souza VM; Scott RA; Holz RC
    Biochemistry; 2001 Nov; 40(44):13302-9. PubMed ID: 11683640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional highlights of methionine aminopeptidase 2 from Leishmania donovani.
    Bhat SY; Dey A; Qureshi IA
    Int J Biol Macromol; 2018 Aug; 115():940-954. PubMed ID: 29680505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes.
    Huguet F; Melet A; Alves de Sousa R; Lieutaud A; Chevalier J; Maigre L; Deschamps P; Tomas A; Leulliot N; Pages JM; Artaud I
    ChemMedChem; 2012 Jun; 7(6):1020-30. PubMed ID: 22489069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure-activity relationships and development of a novel scoring function for metal-ligand interactions.
    Schiffmann R; Neugebauer A; Klein CD
    J Med Chem; 2006 Jan; 49(2):511-22. PubMed ID: 16420038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes.
    Arfin SM; Kendall RL; Hall L; Weaver LH; Stewart AE; Matthews BW; Bradshaw RA
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7714-8. PubMed ID: 7644482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors.
    Oefner C; Douangamath A; D'Arcy A; Häfeli S; Mareque D; Mac Sweeney A; Padilla J; Pierau S; Schulz H; Thormann M; Wadman S; Dale GE
    J Mol Biol; 2003 Sep; 332(1):13-21. PubMed ID: 12946343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disclosing new inhibitors by finding similarities in three-dimensional active-site architectures of polynuclear zinc phospholipases and aminopeptidases.
    González-Roura A; Navarro I; Delgado A; Llebaria A; Casas J
    Angew Chem Int Ed Engl; 2004 Feb; 43(7):862-5. PubMed ID: 14767959
    [No Abstract]   [Full Text] [Related]  

  • 36. Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme.
    Roderick SL; Matthews BW
    Biochemistry; 1993 Apr; 32(15):3907-12. PubMed ID: 8471602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.
    Lowther WT; Orville AM; Madden DT; Lim S; Rich DH; Matthews BW
    Biochemistry; 1999 Jun; 38(24):7678-88. PubMed ID: 10387007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal mediated inhibition of methionine aminopeptidase by quinolinyl sulfonamides.
    Huang M; Xie SX; Ma ZQ; Hanzlik RP; Ye QZ
    Biochem Biophys Res Commun; 2006 Jan; 339(2):506-13. PubMed ID: 16300729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal ions as cofactors for the binding of inhibitors to methionine aminopeptidase: a critical view of the relevance of in vitro metalloenzyme assays.
    Schiffmann R; Heine A; Klebe G; Klein CD
    Angew Chem Int Ed Engl; 2005 Jun; 44(23):3620-3. PubMed ID: 15880695
    [No Abstract]   [Full Text] [Related]  

  • 40. Metalloaminopeptidases: common functional themes in disparate structural surroundings.
    Lowther WT; Matthews BW
    Chem Rev; 2002 Dec; 102(12):4581-608. PubMed ID: 12475202
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.