These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 146360)

  • 1. On the correlation between the amplitude of the electrochromic absorption changes and the number of bulk pigments.
    Renger G; Schmid GH
    Z Naturforsch C Biosci; 1977; 32(11-12):963-7. PubMed ID: 146360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Structural and functional characteristics of the photosynthetic apparatus of the mutants Arabidopsis thaliana (L.) Heynh].
    Iakubova MM; Nazarova ZA; Krendeleva TE
    Biokhimiia; 1980 May; 45(5):864-72. PubMed ID: 7378506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll orientation and exciton migration in the photosynthetic membrane.
    Breton J; Geacintov NE
    Ciba Found Symp; 1978 Feb 7-9; (61):217-36. PubMed ID: 256531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the nature of the primary reactions of photosystem II in photosynthesis. I. The electrochromic 515 nm absorption change as an appropriate indicator for the functional state of the photochemical active centers of system II in DCMY poisoned chloroplasts.
    Renger G; Wolff C
    Z Naturforsch C Biosci; 1975; 30(2):161-71. PubMed ID: 125964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect evidence for a very fast recovery kinetics of chlorophyll-aII in spinach chloroplasts.
    Gläser M; Wolff C; Renger G
    Z Naturforsch C Biosci; 1976; 31(11-12):712-21. PubMed ID: 138292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the nature of the inhibitory effect of trypsin on the photosynthetic electron transport of system II in spinach chloroplasts.
    Renger G; Erixon K; Döring G; Wolff C
    Biochim Biophys Acta; 1976 Aug; 440(2):278-86. PubMed ID: 952970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light metabolism and chloroplast structure in chlorophyll-deficient tobacco mutants.
    Schmid GH; Gaffron H
    J Gen Physiol; 1967 Jan; 50(3):563-82. PubMed ID: 11526847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure, pigment content and photosynthetic activity of the normal and mutant chloroplasts in developing Tradescantia leaves.
    Keresztes A; Faludi-Dániel A
    Acta Biol Acad Sci Hung; 1973; 24(3):175-89. PubMed ID: 4793384
    [No Abstract]   [Full Text] [Related]  

  • 9. Anisotropy of photosynthetic membranes and the degree of fluorescence polarization.
    Becker JF; Breton J; Geacintov NE; Trentacosti F
    Biochim Biophys Acta; 1976 Sep; 440(3):531-44. PubMed ID: 963043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll composition of photosystems II alpha, II beta and I in tobacco chloroplasts.
    Thielen AP; van Gorkom HJ; Rijgersberg CP
    Biochim Biophys Acta; 1981 Mar; 635(1):121-31. PubMed ID: 7213672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A redox study of the electron transport pathway responsible for generation of the slow electrochromic phase in chloroplasts.
    Girvin ME; Cramer WA
    Biochim Biophys Acta; 1984 Oct; 767(1):29-38. PubMed ID: 6487614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of some optical properties of a native and reconstituted photosystem II antenna complex, CP29: pigment binding sites can be occupied by chlorophyll a or chlorophyll b and determine spectral forms.
    Giuffra E; Zucchelli G; Sandonà D; Croce R; Cugini D; Garlaschi FM; Bassi R; Jennings RC
    Biochemistry; 1997 Oct; 36(42):12984-93. PubMed ID: 9335559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochromic absorbance changes in spinach chloroplasts induced by an external electrical field.
    de Grooth BG; van Gorkom HJ; Meiburg RF
    Biochim Biophys Acta; 1980 Feb; 589(2):299-314. PubMed ID: 7356987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electric fields on the absorption spectrum of dye molecules in lipid layers. V. Refined analysis of the field-indicating absorption changes in photosynthetic membranes by comparison with electrochromic measurements in vitro.
    Reich R; Scheerer R; Sewe KU; Witt HT
    Biochim Biophys Acta; 1976 Nov; 449(2):285-94. PubMed ID: 990296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of chlorophylls within chloroplasts as shown by optical and electrochromic properties of the photosynthetic membrane.
    Paillotin G; Breton J
    Biophys J; 1977 Apr; 18(1):63-79. PubMed ID: 851575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures.
    Kramer H; Mathis P
    Biochim Biophys Acta; 1980 Dec; 593(2):319-29. PubMed ID: 7236638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants.
    Krasnovsky AA; Kovalev YV
    Biochemistry (Mosc); 2014 Apr; 79(4):349-61. PubMed ID: 24910208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo quantification of kleptoplastic chlorophyll a content in the "solar-powered" sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry.
    Serôdio J; Pereira S; Furtado J; Silva R; Coelho H; Calado R
    Photochem Photobiol Sci; 2010 Jan; 9(1):68-77. PubMed ID: 20062846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral and functional comparisons between the carotenoids of the two antenna complexes of Rhodopseudomonas capsulata.
    Scolnik PA; Zannoni D; Marrs BL
    Biochim Biophys Acta; 1980 Dec; 593(2):230-40. PubMed ID: 7236633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic reaction centers and primary photochemical reactions.
    Ke B
    Photochem Photobiol; 1974 Dec; 20(6):542-6. PubMed ID: 4376245
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.