These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 14636056)

  • 1. Photostimulation of a sensory rhodopsin II/HtrII/Tsr fusion chimera activates CheA-autophosphorylation and CheY-phosphotransfer in vitro.
    Trivedi VD; Spudich JL
    Biochemistry; 2003 Dec; 42(47):13887-92. PubMed ID: 14636056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex.
    Gordeliy VI; Labahn J; Moukhametzianov R; Efremov R; Granzin J; Schlesinger R; Büldt G; Savopol T; Scheidig AJ; Klare JP; Engelhard M
    Nature; 2002 Oct; 419(6906):484-7. PubMed ID: 12368857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The specificity of interaction of archaeal transducers with their cognate sensory rhodopsins is determined by their transmembrane helices.
    Zhang XN; Zhu J; Spudich JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(3):857-62. PubMed ID: 9927658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation.
    Greenswag AR; Li X; Borbat PP; Samanta D; Watts KJ; Freed JH; Crane BR
    Biochemistry; 2015 Jun; 54(22):3454-68. PubMed ID: 25967982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutively signaling fragments of Tsr, the Escherichia coli serine chemoreceptor.
    Ames P; Parkinson JS
    J Bacteriol; 1994 Oct; 176(20):6340-8. PubMed ID: 7929006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities.
    Swanson RV; Schuster SC; Simon MI
    Biochemistry; 1993 Aug; 32(30):7623-9. PubMed ID: 8347572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic characterization of CheY phosphorylation reactions: comparison of P-CheA and small-molecule phosphodonors.
    Mayover TL; Halkides CJ; Stewart RC
    Biochemistry; 1999 Feb; 38(8):2259-71. PubMed ID: 10029518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes detected in a sensory rhodopsin II-transducer complex.
    Bergo V; Spudich EN; Spudich JL; Rothschild KJ
    J Biol Chem; 2003 Sep; 278(38):36556-62. PubMed ID: 12821665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting of the chemotaxis methylesterase/deamidase CheB to the polar receptor-kinase cluster in an Escherichia coli cell.
    Banno S; Shiomi D; Homma M; Kawagishi I
    Mol Microbiol; 2004 Aug; 53(4):1051-63. PubMed ID: 15306010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An archaeal photosignal-transducing module mediates phototaxis in Escherichia coli.
    Jung KH; Spudich EN; Trivedi VD; Spudich JL
    J Bacteriol; 2001 Nov; 183(21):6365-71. PubMed ID: 11591681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli.
    Garzón A; Parkinson JS
    J Bacteriol; 1996 Dec; 178(23):6752-8. PubMed ID: 8955292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
    Zhou H; Dahlquist FW
    Biochemistry; 1997 Jan; 36(4):699-710. PubMed ID: 9020767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain.
    Stewart RC; Jahreis K; Parkinson JS
    Biochemistry; 2000 Oct; 39(43):13157-65. PubMed ID: 11052668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of CheA protein kinase activation in receptor signaling complexes.
    Levit MN; Liu Y; Stock JB
    Biochemistry; 1999 May; 38(20):6651-8. PubMed ID: 10350484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative simulations of the ground state and the M-intermediate state of the sensory rhodopsin II-transducer complex with a HAMP domain model.
    Nishikata K; Ikeguchi M; Kidera A
    Biochemistry; 2012 Jul; 51(30):5958-66. PubMed ID: 22757657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-induced structural changes occur in the transmembrane helices of the Natronobacterium pharaonis HtrII transducer.
    Yang CS; Spudich JL
    Biochemistry; 2001 Nov; 40(47):14207-14. PubMed ID: 11714274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II.
    Yang CS; Sineshchekov O; Spudich EN; Spudich JL
    J Biol Chem; 2004 Oct; 279(41):42970-6. PubMed ID: 15262967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling.
    Morrison TB; Parkinson JS
    J Bacteriol; 1997 Sep; 179(17):5543-50. PubMed ID: 9287011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal transmission through the HtrII transducer alters the interaction of two alpha-helices in the HAMP domain.
    Inoue K; Sasaki J; Spudich JL; Terazima M
    J Mol Biol; 2008 Feb; 376(4):963-70. PubMed ID: 18199454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.