These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

920 related articles for article (PubMed ID: 14636068)

  • 41. A theoretical analysis of specificity of nucleic acid interactions with oligonucleotides and peptide nucleic acids (PNAs).
    Lomakin A; Frank-Kamenetskii MD
    J Mol Biol; 1998 Feb; 276(1):57-70. PubMed ID: 9514718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Site-specific gene modification by PNAs conjugated to psoralen.
    Kim KH; Nielsen PE; Glazer PM
    Biochemistry; 2006 Jan; 45(1):314-23. PubMed ID: 16388608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new concept in double duplex DNA invasion by chiral PNAs which simultaneously depress PNA-PNA and improve PNA-DNA duplex stability.
    Sforza S; Tedeschi T; Corradini R; Marchelli R
    Nucleic Acids Symp Ser (Oxf); 2007; (51):19-20. PubMed ID: 18029565
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence-specific targeting of duplex DNA by peptide nucleic acids via triplex strand invasion.
    Demidov VV; Frank-Kamenetskii MD
    Methods; 2001 Feb; 23(2):108-22. PubMed ID: 11181030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel binding and efficient cellular uptake of guanidine-based peptide nucleic acids (GPNA).
    Zhou P; Wang M; Du L; Fisher GW; Waggoner A; Ly DH
    J Am Chem Soc; 2003 Jun; 125(23):6878-9. PubMed ID: 12783535
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrogen-bonding interactions in peptide nucleic acid and deoxyribonucleic acid: a comparative study.
    Herbert HE; Halls MD; Hratchian HP; Raghavachari K
    J Phys Chem B; 2006 Feb; 110(7):3336-43. PubMed ID: 16494348
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Origin of high fidelity in target-sequence recognition by PNA-Ce(IV)/EDTA combinations as site-selective DNA cutters.
    Miyajima Y; Ishizuka T; Yamamoto Y; Sumaoka J; Komiyama M
    J Am Chem Soc; 2009 Feb; 131(7):2657-62. PubMed ID: 19199631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA assembly using bis-peptide nucleic acids (bisPNAs).
    Nulf CJ; Corey DR
    Nucleic Acids Res; 2002 Jul; 30(13):2782-9. PubMed ID: 12087161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alternate-strand triplex formation: modulation of binding to matched and mismatched duplexes by sequence choice in the Pu-Pu-Py block.
    Balatskaya SV; Belotserkovskii BP; Johnston BH
    Biochemistry; 1996 Oct; 35(41):13328-37. PubMed ID: 8873599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strand displacement recognition of mixed adenine-cytosine sequences in double stranded DNA by thymine-guanine PNA (peptide nucleic acid).
    Nielsen PE; Egholm M
    Bioorg Med Chem; 2001 Sep; 9(9):2429-34. PubMed ID: 11553484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of determinants for inhibitor binding within the RNA active site of human telomerase using PNA scanning.
    Hamilton SE; Pitts AE; Katipally RR; Jia X; Rutter JP; Davies BA; Shay JW; Wright WE; Corey DR
    Biochemistry; 1997 Sep; 36(39):11873-80. PubMed ID: 9305980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino.
    Karkare S; Bhatnagar D
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):575-86. PubMed ID: 16683135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting linear duplex DNA with mixed-base peptide nucleic acid oligomers facilitated by bisPNA openers.
    Panyutin IG; Panyutin IV; Demidov VV
    Anal Biochem; 2007 Mar; 362(1):145-7. PubMed ID: 17184722
    [No Abstract]   [Full Text] [Related]  

  • 54. Facile synthesis of peptide nucleic acids and peptide nucleic acid-peptide conjugates on an automated peptide synthesizer.
    Joshi R; Jha D; Su W; Engelmann J
    J Pept Sci; 2011 Jan; 17(1):8-13. PubMed ID: 20979047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cyclohexanyl peptide nucleic acids (chPNAs) for preferential RNA binding: effective tuning of dihedral angle beta in PNAs for DNA/RNA discrimination.
    Govindaraju T; Madhuri V; Kumar VA; Ganesh KN
    J Org Chem; 2006 Jan; 71(1):14-21. PubMed ID: 16388612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of transcription by bisPNA-peptide conjugates.
    Zhao X; Kaihatsu K; Corey DR
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):535-46. PubMed ID: 14565228
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network.
    Petersson B; Nielsen BB; Rasmussen H; Larsen IK; Gajhede M; Nielsen PE; Kastrup JS
    J Am Chem Soc; 2005 Feb; 127(5):1424-30. PubMed ID: 15686374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection.
    Chakrabarti R; Klibanov AM
    J Am Chem Soc; 2003 Oct; 125(41):12531-40. PubMed ID: 14531698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of terminal amino acids on the stability and specificity of PNA-DNA hybridisation.
    Silvester NC; Bushell GR; Searles DJ; Brown CL
    Org Biomol Chem; 2007 Mar; 5(6):917-23. PubMed ID: 17340007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.