BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 14636069)

  • 1. Perturbation from a distance: mutations that alter LacI function through long-range effects.
    Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS
    Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor.
    Xu J; Matthews KS
    Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery.
    Falcon CM; Matthews KS
    Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated insights from simulation, experiment, and mutational analysis yield new details of LacI function.
    Swint-Kruse L; Zhan H; Matthews KS
    Biochemistry; 2005 Aug; 44(33):11201-13. PubMed ID: 16101304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine insertion in the hinge region of lactose repressor protein alters DNA binding.
    Falcon CM; Matthews KS
    J Biol Chem; 1999 Oct; 274(43):30849-57. PubMed ID: 10521477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A closer view of the conformation of the Lac repressor bound to operator.
    Bell CE; Lewis M
    Nat Struct Biol; 2000 Mar; 7(3):209-14. PubMed ID: 10700279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strengthening the dimerisation interface of Lac repressor increases its thermostability by 40 deg. C.
    Gerk LP; Leven O; Müller-Hill B
    J Mol Biol; 2000 Jun; 299(3):805-12. PubMed ID: 10835285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.
    Zhan H; Sun Z; Matthews KS
    Biochemistry; 2009 Feb; 48(6):1305-14. PubMed ID: 19166325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage.
    Falcon CM; Swint-Kruse L; Matthews KS
    J Biol Chem; 1997 Oct; 272(43):26818-21. PubMed ID: 9341111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using networks to identify fine structural differences between functionally distinct protein states.
    Swint-Kruse L
    Biochemistry; 2004 Aug; 43(34):10886-95. PubMed ID: 15323549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein.
    Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J
    J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants.
    Ozarowski A; Barry JK; Matthews KS; Maki AH
    Biochemistry; 1999 May; 38(21):6715-22. PubMed ID: 10346891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 Mar; 38(12):3579-90. PubMed ID: 10090744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
    Lewis M; Chang G; Horton NC; Kercher MA; Pace HC; Schumacher MA; Brennan RG; Lu P
    Science; 1996 Mar; 271(5253):1247-54. PubMed ID: 8638105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial mutations of lac repressor. Stability of monomer-monomer interface is increased by apolar substitution at position 84.
    Nichols JC; Matthews KS
    J Biol Chem; 1997 Jul; 272(30):18550-7. PubMed ID: 9228020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdividing repressor function: DNA binding affinity, selectivity, and allostery can be altered by amino acid substitution of nonconserved residues in a LacI/GalR homologue.
    Zhan H; Taraban M; Trewhella J; Swint-Kruse L
    Biochemistry; 2008 Aug; 47(31):8058-69. PubMed ID: 18616293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand interactions with lactose repressor protein and the repressor-operator complex: the effects of ionization and oligomerization on binding.
    Wilson CJ; Zhan H; Swint-Kruse L; Matthews KS
    Biophys Chem; 2007 Mar; 126(1-3):94-105. PubMed ID: 16860458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants.
    Barry JK; Matthews KS
    Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.