BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 14636320)

  • 1. Hyperexcitability of CA3 pyramidal cells in mice lacking the potassium channel subunit Kv1.1.
    Lopantsev V; Tempel BL; Schwartzkroin PA
    Epilepsia; 2003 Dec; 44(12):1506-12. PubMed ID: 14636320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcna1-null mice.
    van Brederode JF; Rho JM; Cerne R; Tempel BL; Spain WJ
    Neuroscience; 2001; 103(4):921-9. PubMed ID: 11301201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats.
    Hollrigel GS; Chen K; Baram TZ; Soltesz I
    Neuroscience; 1998 May; 84(1):71-9. PubMed ID: 9522363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice.
    Smart SL; Lopantsev V; Zhang CL; Robbins CA; Wang H; Chiu SY; Schwartzkroin PA; Messing A; Tempel BL
    Neuron; 1998 Apr; 20(4):809-19. PubMed ID: 9581771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1.
    Brew HM; Hallows JL; Tempel BL
    J Physiol; 2003 Apr; 548(Pt 1):1-20. PubMed ID: 12611922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride-cotransport blockade desynchronizes neuronal discharge in the "epileptic" hippocampal slice.
    Hochman DW; Schwartzkroin PA
    J Neurophysiol; 2000 Jan; 83(1):406-17. PubMed ID: 10634883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection.
    Gutiérrez R; Heinemann U
    Eur J Neurosci; 2001 Apr; 13(7):1371-9. PubMed ID: 11298797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of vesicular zinc in mossy fibers does not affect synaptic excitability of CA3 pyramidal cells in zinc transporter 3 knockout mice.
    Lopantsev V; Wenzel HJ; Cole TB; Palmiter RD; Schwartzkroin PA
    Neuroscience; 2003; 116(1):237-48. PubMed ID: 12535956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid.
    Ben-Ari Y; Gho M
    J Physiol; 1988 Oct; 404():365-84. PubMed ID: 2908124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.
    Menendez de la Prida L; Sanchez-Andres JV
    Neuroscience; 2000; 97(2):227-41. PubMed ID: 10799755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of the Kv1.1 potassium channel promotes pathologic sharp waves and high frequency oscillations in in vitro hippocampal slices.
    Simeone TA; Simeone KA; Samson KK; Kim DY; Rho JM
    Neurobiol Dis; 2013 Jun; 54():68-81. PubMed ID: 23466697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Spike Transfer at Hippocampal Mossy Fiber Synapses In Vivo by GABAA and GABAB Receptor-Mediated Inhibition.
    Zucca S; Griguoli M; Malézieux M; Grosjean N; Carta M; Mulle C
    J Neurosci; 2017 Jan; 37(3):587-598. PubMed ID: 28100741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice.
    Traynelis SF; Dingledine R
    J Neurophysiol; 1988 Jan; 59(1):259-76. PubMed ID: 3343603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of voltage-gated and synaptic conductances contributing to network excitability defects in the mutant mouse tottering.
    Helekar SA; Noebels JL
    J Neurophysiol; 1994 Jan; 71(1):1-10. PubMed ID: 8158221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Kv1 potassium channels in mouse hippocampal primary cultures: development and activity-dependent regulation.
    Grosse G; Draguhn A; Höhne L; Tapp R; Veh RW; Ahnert-Hilger G
    J Neurosci; 2000 Mar; 20(5):1869-82. PubMed ID: 10684888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-Independent SK-Channel Dysfunction Causes Neuronal Hyperexcitability in the Hippocampus of
    Deng PY; Carlin D; Oh YM; Myrick LK; Warren ST; Cavalli V; Klyachko VA
    J Neurosci; 2019 Jan; 39(1):28-43. PubMed ID: 30389838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbachol-induced synchronized rhythmic bursts in CA3 neurons of guinea pig hippocampus in vitro.
    Bianchi R; Wong RK
    J Neurophysiol; 1994 Jul; 72(1):131-8. PubMed ID: 7964998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells.
    Hyun JH; Eom K; Lee KH; Bae JY; Bae YC; Kim MH; Kim S; Ho WK; Lee SH
    J Physiol; 2015 Aug; 593(16):3617-43. PubMed ID: 26047212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.
    Lalic T; Pettingill P; Vincent A; Capogna M
    Epilepsia; 2011 Jan; 52(1):121-31. PubMed ID: 21054347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.